| 研究生: |
林大為 Da-Wei Lin |
|---|---|
| 論文名稱: |
結合模擬退火之改良粒子群演算法於結構最佳化設計的研究 |
| 指導教授: |
莊德興
Der-Shin Juang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 236 |
| 中文關鍵詞: | 混合高階啟發式演算法 、結構輕量化設計 、混合搜尋法 、粒子群演算法 、模擬退火法 |
| 外文關鍵詞: | hybrid meta-heuristic algorithm., optimum structural design, modified PSO, simulated annealing |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是針對連續變數、離散變數、混合變數之最佳化設計問題,提出以結合改良過後的粒子群演算法(MPSO)與模擬退火法(SA)的混合高階啟發式演算法,即MPSO-SA。PSO為全域隨機性的搜尋法,其概念簡單且不需調整過多參數。從過去的研究中顯示出,PSO在求解最佳化問題時,粒子隨群體最佳解來移動,然而搜尋過程中的群體最佳解可能僅是局部最佳解或近似局部最佳解,使得粒子逐漸往局部小區域靠近而喪失整體的多樣性,將導致搜尋後期收斂速度過慢,落於局部次佳解中。為了改善此缺失,本文採用了避開較差解的概念來改良PSO,再將改良過的PSO(MPSO)與SA兩種演算法加以混合,期望能藉SA的跳躍機制,使得於搜尋過程中能有效地進行全域和局部搜尋,以加強整體的搜尋性能。藉由數個結構輕量化設計問題來探討其適用性和影響求解品質與效率的相關參數,並在設計結果之比較,來探討本文所發展之MPSO-SA的優缺點。比較結果顯示MPSO-SA求解多數混合變數之最佳化問題時,具有良好的求解能力及穩定性。
Particle Swarm Optimization has been used effectively for many types of optimization problems. The PSO is an evolutionary computation technique which has ability in performing global search. Many challenges arise when the algorithm is applied to heavily constrained problems where feasible regions may be sparse or disconnected. This report is devoted to the presentation of a hybrid search algorithm, namely MPSO–SA, for optimum design of structures with continuous, discrete and mixed variables. The main deficiency of the PSO is that all particles have the tendency to fly to the current best solution which may be a local optimum or a solution near local optimum. In this case, all particles will move toward to a small region and the global exploration ability will be weakened. To overcome the drawback of premature convergence of the method and to make the algorithm explore the local and global minima by the simulated annealing method (SA) and a modified PSO (MPSO), respectively. More than ten typical structures are used to validate the effectiveness of the algorithm. The results from comparative studies of the MPSO-SA against other optimization algorithms are reported to show the solution quality of the proposed algorithm.
參考文獻
[1] Pedersen, P., “Optimal Joint Positions for Space Trusses,” Journal of the Structural Division, ASCE, Vol. 99, No. 12, pp. 2459?2475 (1973).
[2] Bremicker, M., Papalambros, P. Y., and Loh, H. T., “Solution of Mixed-Discrete Structural Optimization Problems with a New Sequential Linearization Algorithm,” Computers and Structures, Vol. 37, No. 4, pp. 451?461 (1990).
[3] Chai, S., and Sun, H. C., “A Relative Difference Quotient Algorithm for Discrete Optimization,” Structural Optimization, Vol. 12, No. 1, pp. 46?56 (1996).
[4] Parkinson, A., and Wilson, M., “Development of a Hybrid SQP -GRG Algorithm for Constrained Nonlinear Programming,” Transactions of ASME, Journal of Mechanisms and Automation in Design, Vol. 110, No. 1, pp. 73?83 (1989).
[5] Lim, O. K., and Arora, J. S., “An Active Set RQP-Algorithm for Engineering Design Optimization,” Computer Methods in Applied Mechanics and Engineering, Vol. 57, pp. 51?65 (1986).
[6] Rajeev, S., and Krishnamoorthy, C. S., “Genetic Algorithms-based Methodologies for Design Optimization of Trusses,” Journal of Structural Engineering, ASCE, Vol. 123, No. 3, pp. 350?358 (1997).
[7] Yang, J., and Soh, C. K., “Structural Optimization by Genetic Algorithms with Tournament Selection,” Journal of Computing in Civil Engineering, ASCE, Vol. 11, No. 3, pp. 195?200 (1997).
[8] Wang, D., Zhang W. H., and Jiang, J. S., “Truss Shape Optimi -zation with Multiple Displacement Constraints,” Computer Methods in Applied Mechanics and Engineering, Vol. 191, No. 33, pp. 3597?3612 (2002).
[9] 胡曉輝,「粒子群優化算法介紹」, <http://web.ics.purdue.edu/ ~hux/tutorials.shtml> , 民國91年4月。
[10] 譚立靜、欒麗君、牛奔、孟亞寧,「一種求解函數優化的新型混合優化算法」,遼寧工程技術大學機械工程學院,遼寧 (2006)。
[11] 赫然、王永吉、王青、周津慧、胡陳勇,「一種改進的自適應逃逸微粒群算法及實驗分析」,軟件學報,第十六卷,第十二期,第2036?2044頁 (2005)。
[12] Juang, C. F., and Liou, Y. C., “TSK-type Recurrent Fuzzy Network Design by the Hybrid of Genetic Algorithm and Particle Swarm Optimization,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 34, No. 2, pp. 997?1006 (2004).
[13] Ye, B., Zhu, C. Z., Guo, C. X., and Cao, Y. J., “Generating Extended Fuzzy Basis Function Networks Using Hybrid Algorithm,” Lecture Notes in Artificial Intelligence, Vol. 3613, pp. 79?88 (2005).
[14] 莊玟珊, 「PSO-SA混合收尋法與其他結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢市 (2007)。
[15] Metropolis, N., Rosenbluth, A. W., Teller, A. H., and Teller, E., “Equation of State Calculation by Fast Computing Machines,” Journal of Chemical Physics, Vol. 21, No. 6, pp. 1087?1092 (1953).
[16] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., “Optimization by Simulated Annealing,” Science, Vol. 220, No. 4598, pp.671?680 (1983).
[17] 李世炳、鄒忠毅,「簡介導引模擬退火法及其應用」,物理雙月刊,第二十四卷,第二期,第307?319頁 (2002)。
[18] Aarts, E. H. L., and Korst, J. H. M., Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing, John Wiley & Sons, New York (1989).
[19] Holland, J. H., “Outline for a Logical Theory of Adaptive System,” Journal of the Association for Computing Machinery, Vol. 3, No. 3, pp. 297?314 (1962).
[20] Davis, J. S., Handbook of Genetic Algorithms, Van Nostrand Reinhold (1991).
[21] Whitley, D., “The Genitor Algorithm and Seiection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best,” Proceeding of the Third International Conference on Genetic Algorithms, J. D. Schaffer, pp. 116?121, Morgan Kaufmann, San Mateo, California (1989).
[22] Wu, S. J., and Chow, P. T., “The Application of Genetic Algorithms to Discrete Optimation Problems,” Journal of the Chinese Society of Mechanical Engineers, Vol. 16, No. 6, pp. 587?598 (1995).
[23] Wu, S. J., and Chow, P. T., “Integrated Discrete and Configuration Optimization of Trusses Using Genetic Algorithms,” Computers and Structures, Vol. 55, No. 4, pp. 695?702 (1995).
[24] De Jong, K. A., “An Analysis of the Behavior of a Class of Genetic Adaptive Systems,” Ph.D. Dissertation, University of Michigan, Dissertation Abstracts International, Vol. 36, No. 10, 5140B. (University Microfilms No. 76?9381) (1975).
[25] Geem, Z. W., Kim, J. H., and Loganathan, G.V., “A New Heuristic Optimization Algorithm: Harmony Search,” Simulation, Vol. 76(2), pp.60-68(2001).
[26] Kim, M., “Solving Traveling Salesman Problem Using Harmony Search,” ENCE 677, Fall (2003).
[27] Geem, Z. W., Kim, J. H., and Loganathan, G.V., “Harmony search optimization: Application to pipe network design,” Int. J. Modell. Simulation, Vol. 22(2), pp. 125-133 (2002).
[28] 蔡清欉, 「以粒子群最佳化為基礎之電腦遊戲角色設計之研究」,碩士論文,東海大學資訊工程與科學研究所,台中市 (2003)。
[29] Kennedy, J., and Eberhart, R. C., Swarm Intelligence, Morgan Kaufmann (2001).
[30] Kennedy, J., and Eberhart, R. C., “Particle Swarm Optimization,” Proceedings of IEEE International Conference on Neural Networks, Vol. IV, pp. 1942?1948 (1995).
[31] Eberhart, R. C., and Kennedy, J., “A New Optimizer Using Particle Swarm Theory,” Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39?43 (1995).
[32] Eberhart, R. C., and Shi, Y., “Comparison Between Genetic Algorithms and Particle Swarm Optimization,” In: Proceedings of the Seventh Annual Conference on Evolutionary Programming, pp. 611?616 (1998).
[33] Angeline, P. J., “Using Selection to Improve Particle Swarm Optimization,” IEEE International conference on Evolutionary Computation, pp. 84?89 (1998).
[34] Krink, T., Vesterstorm J. S., and Riget, J., “Particle Swarm Optimization with Spatial Particle Extension,” Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1474?1497 (2002).
[35] AL-Kazemi, B., and Mohan, C. K., “Multi-Phase Generalization of the Particle Swarm Optimization Algorithm,” Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 1, pp. 489?494 (2002).
[36] Hu, X., and Eberhart, R. C., “Adaptive Particle Swarm Optimization: Detection and Response to Dynamic System,” Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1666?1670 (2002).
[37] Xie, X. F., Zhang, W. J., and Yang, Z. L., “A Dissipative Particle Swarm Optimization,” Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 2, pp. 1456?1461 (2002).
[38] Ratnaweera, A., Halgamuge, SK., and Watson, HC., “Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients,” IEEE Transactions on Evolutionary Computation, Vol. 8, No. 3, pp. 240?255 (2004).
[39] Løvbjerg, M., Rasmussen, T. K., and Krink, T., “Hybrid Particle Swarm Optimizer with Breeding and Subpopulations,” Proceedings of the Genetic and Evolutionary Computation Conference, pp. 469?476 (2001).
[40] Shi, Y., and Eberhart, R. C., “A Modified Particle Swarm Optimizer,” Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69?73 (1998).
[41] Shi, Y., and Eberhart, R. C., “Parameter Selection in Particle Swarm Optimization,” V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben (eds), Lecture Notes in Computer Science, 1447, Evolutionary Programming VII, Springer, Berlin, pp. 591?600 (1998).
[42] Lipson, S. L., and Gwin, L. B., “The Complex Method Applied to Optimal Truss Configuration,” Computers and Structures, Vol. 7, No. 3, pp. 461?468 (1977).
[43] Eberhart, R. C., and Shi, Y., “Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization,” Proceedings of the 2000 Congress on Evolutionary Computation, Vol. 1, pp. 84?88 (2000).
[44] Carlisle, A., and Dozier, G., “An off-the-shelf PSO,” Proceedings of the Workshop on Particle Swarm Optimization, Vol. 1, pp. 1?6 (2001).
[45] Clerc, M., “The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization,” Proceedings of the Congress on Evolutionary Computation, Vol. 3, pp. 1951?1957 (1999).
[46] Fourie, P. C., and Groenwold A. A., “The Particle Swarm Optimization Algorithm in Size and Shape Optimization,” Structural and Multidisciplinary Optimization, Vol. 23, No. 4, pp. 259?267 (2002).
[47] Yang, C., and Dan, S., “A New Particle Swarm Optimization Technique,” Proceedings of the 18th International Conference on Systems Engineering (ICSEng’05), IEEE, pp.164-169 (2005).
[48] Corana, A., Marchesi, M., Martini, C., and Ridella, S., “Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm,” ACM Transaction on Mathematical Software, Vol. 13, No. 3, pp. 262?280 (1987).
[49] Wang, L., Li, L. L., and Zheng, D. Z., “A Class of Effective Search Strategies for Parameter Estimation of Nonlinear Systems,” ACTA Automatica Sinica, Vol. 29, No. 6, pp. 953?958 (2003).
[50] Coello, C. A., “Theoretial and Numerical Constraint-Handing Techniques Used with Evolutionary Algorithms: A Survey of the State of the Art,” Computer Methods in Applied Mechanics and Engineering, Vol. 191, No. 12, pp. 1245?1287 (2002).
[51] Deb, K., Gulati, S., and Chakrabarti, S., “Optimal Truss-Structure Design Using Real-Coded Genetic Algoritms,” Proceedings of the Third Annual Conference, pp. 479?486 (1998).
[52] Erbatur, F., Hasancebi, O., Tutuncu, I., and Kilic, H., “Optimal Design of Planar and Space Structures with Genetic Algorithms,” Computers and Structures, Vol. 75, No. 2, pp. 209?224 (2000).
[53] 張慰慈, 「DLM?GA混合搜尋法於結構離散最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢市 (2003)。
[54] 藍志浩, 「考慮動態反應束制及關連性離散變數之結構最佳化設計」,碩士論文,國立中央大學土木工程研究所,中壢市 (2005)。
[55] AISC, Manual of Construction : Allowable Stress Design, 9nd Edition, Chicago, Illinois (1989).
[56] Groenwold, A. A., and Stander, N., “Optimal Discrete Sizing of Truss Structures Subject to Buckling Constraints,” Structural Optimization, Vol. 14, pp. 71?80 (1997).
[57] Groenwold, A. A., Stander, N., and Snyman, J. A., “A Regional Genetic Algorithms for the Discrete Optimal Design of Truss Structures,” International Journal for Numerical Methods in Engineering, Vol. 44, No. 6, pp. 749?766 (1999).
[58] Imai, K., “Configuration Optimization of Trusses by the Multiplier Method,” Mechanics and Structures Department, School of Engineering and Applied Science, University of California, Los Angles, Rpt. No. UCLA-ENG-7842 (1978).
[59] Hasançebi, O., and Erbatur, F., “Layout Optimization of Trusses Using Improved GA Methodlogies,” ACTA Mechanica, Vol. 146, pp. 87?107 (2001).
[60] Kaveh, A., and Kalatjari, V., “Size/Geometry Optimization of Trusses by the Force Method and Genetic Algorithm,” Zeitschrift fur Angewandte Mathematik and Mechanics, Vol. 84, No. 5, pp. 347?357 (2004).
[61] Juang, D. S., “Integrated Configuration and Discrete Sizing Optimization of Truss Structures Using Discrete Lagrangian Method,” 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY, Aug. 30-Sept. 1, Paper No. AIAA-2004-4535 (2004).
[62] 羅冠君, 「基於和聲搜尋法與離散拉格郎日法之混合演算法於結構最佳化設計的研究」,碩士論文,國立中央大學土木工程研究所,中壢市 (2008)。
[63] Camp, C., Pezeshk, S., and Cao G., “Optimized Design of Two-Dimensional Structures Using a Genetic Algorithm,” Journal of Structural Engineering, ASCE, Vol. 124, No. 5, pp. 551?559 (1998).
[64] Nanakorn, P., and Meesomklin, K., “An Adaptive Penalty Function in Genetic Algorithms for Structural Design Optimiation,” Computers and Structures, Vol. 79, No. 29, pp. 2527?2539 (2001).
[65] Wu, S. J., and Chow, P. T., “Integrated Discrete and Configuration Optimization of Trusses Using Genetic Algorithm,” Computers Structures, Vol. 55, No. 4, pp. 695?702 (1995).
[66] 莊德興, 「桁架之形狀與離散斷面的整合輕量化設計」,第七屆結構工程研討會,桃園大溪 (2004)。
[67] Thierauf, G., and Cai, J., “Parallel Evolution Strategy for Solving Structural Optimization,” Engineering Structures, Vol. 19, No. 4, pp. 318?324 (1997).
[68] 黃嘉進, 「桁架形狀與構件離散斷面之兩階段最佳化設計法」,碩士論文,國立中央大學土木工程研究所,中壢市 (2007)。