跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝佶宏
Ji-Hong Hsieh
論文名稱: 在厚尾分配下的均值收斂交易策略
指導教授: 孫立憲
Li-Hsien Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 44
中文關鍵詞: 均值收斂交易策略配對交易Student's t 分佈
外文關鍵詞: mean reverting model, pair trading, Student's t distribution
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 均值收斂交易策略在金融市場上一直以來都被廣泛的應用,而均值收斂交易策略在配對交易下的表現往往較單一商品佳。然而,均值收斂模型假設分佈為常態分配,但股票報酬分佈一直以來存在厚尾的問題,而Student's t 分佈擁有厚尾的特性。本文藉由均值收斂模型假設分佈為Student's t 分佈下可較佳捕捉厚尾的性質,且利用台灣金融市場的交易資料進行回測,並將其結果與均值收斂模型在常態模型下進行比較。


    The mean reverting trading strategy has been widely used in the financial market, and the pair trading performance of the mean reverting strategy is often better than a single commodity. However, in empirical studies, we obtain that the density of log returns, but the density of log return usually has fat-tailed problem. The Student's t distribution has the characteristic of fat tail. In this paper, we propose the reverting model under the Student's t distribution can capture better fat-tailed property, and use stock data from Taiwan finance market. We show the empirical results in order to compare the performance of two reverting model.

    摘要 i Abstract ii 誌謝 iii 第一章 緒論 1 第二章 價差均值收斂模型 2 第一節 價差對數隨機過程 2 第二節 模型假設 3 第三節 模型校正 第三章 研究方法 5 第一節 參數估計 5 第二節 最大期望演算法 7 第四章 模擬研究 13 第一節 模擬方法 13 第二節 模擬結果 14 第五章 交易規則 19 第六章 實證研究 21 第一節 回測資料 21 第二節 回測結果 27 第七章 結論 32 參考文獻 33

    [1] Timofei Bogomolov. Pairs trading based on statistical variability of the spread process.
    Quantitative Finance, 13(9):1411–1430, 2013.
    [2] Rama Cont. Empirical properties of asset returns: stylized facts and statistical issues.
    2001.
    [3] Bo Liu, Lo-Bin Chang, and Hélyette Geman. Intraday pairs trading strategies on high
    frequency data: The case of oil companies. Quantitative Finance, 17(1):87–100, 2017.
    [4] Chuanhai Liu and Donald B Rubin. Ml estimation of the t distribution using em and
    its extensions, ecm and ecme. Statistica Sinica, pages 19–39, 1995.
    [5] Thorben Lubnau and Neda Todorova. Trading on mean-reversion in energy futures
    markets. Energy Economics, 51:312–319, 2015.
    [6] Johannes Stübinger and Sylvia Endres. Pairs trading with a mean-reverting jump–
    diffusion model on high-frequency data. Quantitative Finance, pages 1–17, 2018.
    [7] Wing-Keung Wong, Meher Manzur, and Boon-Kiat Chew. How rewarding is technical
    analysis? evidence from singapore stock market. Applied Financial Economics, 13(7):
    543–551, 2003.

    QR CODE
    :::