跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃千綺
Chien-Chi Huang
論文名稱: 藉由選擇鹵化鋅前驅物以優化銦鋅磷量子點的光學特性及其於白光發光二極體之應用
Optimizing the Optical Properties of InZnP Quantum Dots through the Selection of Zinc Halide Precursors and the Application in White Light Emitting Diodes
指導教授: 王冠文
Kuan-Wen Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 80
中文關鍵詞: 量子點磷化銦鹵化鋅白光發光二極體演色性色域
外文關鍵詞: quantum dots (QDs), indium phosphide (InP), zinc halides, white light-emitting diodes (WLEDs), color rendering index (CRI), color gamut
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步,白光發光二極體(white light-emitting diodes, WLEDs)逐漸取代白熾燈和螢光燈,成為固態照明和背光顯示器的主流選擇。量子點(quantum dots, QDs)憑藉其獨特的發光特性,已經超越傳統的螢光粉,成為新一代發光材料的代表。在所有量子點種類中,磷化銦(indium phosphide, InP)量子點因其環境友善性和相比於傳統II-VI半導體的穩定性及共價特性而受到特別關注。
    本研究中,通過在InP量子點合成過程中加入鹵化鋅前驅物,成功合成了銦鋅磷(InZnP)合金奈米晶體,以改善其光學特性。鋅的添加促進了InZnP合金奈米晶體的形成,與純InP相比,其具有更寬的能隙能量。X射線吸收光譜(X-ray absorption spectroscopy , XAS)的結果證實了合金具有顯著的富鋅表面層,這一特性不僅使InZnP核心和硫化鋅(zinc sulfide, ZnS)殼層間的晶格常數過渡更為平滑,而且促進了ZnS殼層的生長。與InP核心相比,InZnP合金結構減輕了InP的表面缺陷態,從而顯著提升量子效率。此外,本研究突顯不同鹵化鋅前驅物對量子點光學特性的影響。特別是,使用高反應性氯化鋅合成的量子點核心展現了增強的Zn-O鍵結,能有效減少InP 量子點的固有表面缺陷。殼層形成後,量子點的光學特性得到了明顯提升,進一步凸顯在量子點合成中選擇合適前驅物的重要性,並且強調前驅物的選擇對量子點光學性質方面的關鍵作用,以及對於最終元件效能的影響。
    在照明應用中,CS-Cl/SSN-LED元件顯示出極佳的演色性(color rendering index, CRI)為83。在顯示器應用方面,CS-Br/KSF-LED元件達到了110 % NTSC (National Television System Committee)的色域覆蓋率,使其成為未來顯示技術的領先競爭者。總體而言,此研究成果不僅彰顯了InZnP/ZnS量子點在推動LED技術發展方面的巨大潛力,也在提升發光效率和色彩演色方面取得了顯著的進展。


    With the advancement of technology, white light-emitting diodes (WLEDs) have increasingly replaced incandescent and fluorescent lamps, becoming widely used in solid-state lighting and backlight displays. Quantum dots (QDs) have emerged as a new generation of luminescent materials, replacing traditional phosphors owing to their unique luminescent properties. Among them, indium phosphide (InP) QDs are notable not only for their environmental sustainability but also for their superior covalent properties and better stability compared to conventional II-VI semiconductors, such as cadmium-based ones.
    In this study, zinc halide precursors were incorporated during the synthesis of InP QDs to generate InZnP alloy nanocrystals, aimed at improving their optical properties. The addition of zinc promotes the formation of InZnP alloy nanocrystals, which possess a wider band gap energy compared to pure InP. X-ray absorption spectroscopy revealed that the alloy displays a significant zinc-rich surface layer, leading to a smoother lattice parameter transition at the interface between the InZnP core and the zinc sulfide (ZnS) shell. This change facilitates the growth of the ZnS shell. The InZnP alloy structure, compared with the InP core, alleviates InP defect states, thereby significantly improving the quantum yield (QY) of the InZnP/ZnS QDs. Additionally, this study highlights the substantial impact of different zinc halide precursors on the optical properties of QDs. Specifically, QDs synthesized with highly reactive zinc chloride exhibit increased Zn-O bonds, effectively reducing the inherent surface defects of InP QDs. After the formation of the shell, the optical properties of the QDs were significantly enhanced. This underscores the importance of selecting appropriate precursors in the synthesis of QDs, highlighting the pivotal role of precursor choice in influencing the optical characteristics of the QDs, and its decisive impact on the optical performance of the final product.
    For lighting applications, the CS-Cl/SSN-LED device has been innovatively designed, boasting an impressive color rendering index (CRI) of 83. In display applications, the CS-Br/KSF-LED device achieves an exceptional 110% coverage of the National Television System Committee (NTSC) color gamut, positioning it as a leading contender for future display technologies. Overall, these findings underscore the potential of InZnP/ZnS QDs in advancing LED technologies, with notable improvements in photoluminescence efficiency and color rendering capabilities.

    摘要 i Abstract ii 致謝 iv Table of Contents vi List of Figures viii List of Tables x Chapter 1 Introduction 1 1.1 InP QDs 2 1.2 Synthetic Methods of InP QDs 6 1.3 Surface Passivation for Enhanced Performance 8 1.4 Zn-In Interfacial Alloying 11 1.5 Motivation and Approach 13 Chapter 2 Experimental Section 14 2.1 Chemicals and Materials 14 2.2 Preparation of InZnP and InZnP/ZnS QDs 15 2.3 Preparation of WLEDs 17 2.4 Characterization of QDs and WLEDs 19 2.4.1 X-ray diffraction (XRD) 19 2.4.2 Transmission electron microscopy (TEM) 19 2.4.3 Inductively coupled plasma-optical emission spectrometry (ICP-OES) 19 2.4.4 Ultraviolet-visible absorption spectrometer (UV-Vis) 21 2.4.5 Fluorescence spectrophotometer (FL) 21 2.4.6 X-ray photoelectron spectroscopy (XPS) 21 2.4.7 X-ray absorption spectroscopy (XAS) 21 2.4.8 QY measurement 22 2.4.9 Phosphor spectrum measuring system 22 2.4.10 LED measurement system 22 2.4.11 Stability test of InZnP/ZnS QDs 23 2.4.12 Stability test of WLEDs 23 Chapter 3 Results and Discussion 24 3.1 The Physical and Optical Properties of C-X QDs 24 3.1.1 Materials characterizations 24 3.1.2 The optical properties of C-X QDs 33 3.1.3 Summary 35 3.2 The Physical and Optical Properties of CS-X QDs 36 3.2.1 Materials characterizations 36 3.2.2 The optical properties and stability of CS-X QDs 39 3.2.3 Summary 42 3.3 The Application of CS-X QDs in WLED 46 3.3.1 Optical properties of a 3020 SMD blue-emitting LED and phosphor materials 46 3.3.2 Electroluminescent properties and stability test of CS-Cl/SSNx-LEDy 46 3.3.3 Electroluminescent properties and stability test of CS-Br/KSFx-LEDy 51 3.3.4 Summary 55 Chapter 4 Conclusions 59 References 61

    [1] Jang, H. S.; Im, W. B.; Lee, D. C.; Jeon, D. Y.; Kim, S. S., Enhancement of red spectral emission intensity of Y3Al5O12: Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs. J. Lumin. 2007, 126, 371-377.
    [2] Zhang, J.; Yang, Y.; Deng, H.; Farooq, U.; Yang, X.; Khan, J.; Tang, J.; Song, H., High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano 2017, 11, 9294-9302.
    [3] Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H., Stability of quantum dots, quantum dot films, and quantum dot light‐emitting diodes for display applications. Adv. Mater. 2019, 31, 1804294.
    [4] Jiang, X.; Fan, Z.; Luo, L.; Wang, L., Advances and Challenges in Heavy-Metal-Free InP Quantum Dot Light-Emitting Diodes. Micromachines 2022, 13, 709.
    [5] Berends, A. C.; de Mello Donega, C., Ultrathin One- and Two-Dimensional Colloidal Semiconductor Nanocrystals: Pushing Quantum Confinement to the Limit. J. Phys. Chem. Lett. 2017, 8, 4077-4090.
    [6] Garcia de Arquer, F. P.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H., Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz3541.
    [7] Wang, Y. K.; Yuan, F.; Dong, Y.; Li, J. Y.; Johnston, A.; Chen, B.; Saidaminov, M. I.; Zhou, C.; Zheng, X.; Hou, Y.; Bertens, K.; Ebe, H.; Ma, D.; Deng, Z.; Yuan, S.; Chen, R.; Sagar, L. K.; Liu, J.; Fan, J.; Li, P.; Li, X.; Gao, Y.; Fung, M. K.; Lu, Z. H.; Bakr, O. M.; Liao, L. S.; Sargent, E. H., All-Inorganic Quantum-Dot LEDs Based on a Phase-Stabilized α-CsPbI3 Perovskite. Angew. Chem., Int. Ed. 2021, 60, 16164-16170.
    [8] Dai, S.; Su, Y. S.; Chung, S. R.; Wang, K. W.; Pan, X., Controlling the magic size of white light-emitting CdSe quantum dots. Nanoscale 2018, 10, 10256-10261.
    [9] Mora‐Seró, I., Current Challenges in the Development of Quantum Dot Sensitized Solar Cells. Adv. Energy Mater. 2020, 10, 2001774.
    [10] Kim, M. R.; Ma, D., Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges. J. Phys. Chem. Lett. 2015, 6, 85-99.
    [11] Fan, F.; Voznyy, O.; Sabatini, R. P.; Bicanic, K. T.; Adachi, M. M.; McBride, J. R.; Reid, K. R.; Park, Y. S.; Li, X.; Jain, A.; Quintero-Bermudez, R.; Saravanapavanantham, M.; Liu, M.; Korkusinski, M.; Hawrylak, P.; Klimov, V. I.; Rosenthal, S. J.; Hoogland, S.; Sargent, E. H., Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 2017, 544, 75-79.
    [12] Thal, L. B.; Mann, V. R.; Sprinzen, D.; McBride, J. R.; Reid, K. R.; Tomlinson, I. D.; McMahon, D. G.; Cohen, B. E.; Rosenthal, S. J., Ligand-conjugated quantum dots for fast sub-diffraction protein tracking in acute brain slices. Biomater. Sci. 2020, 8, 837-845.
    [13] Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X., Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96-99.
    [14] Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E., Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634-638.
    [15] Chen, H. S.; Chung, S. R.; Chen, Y. C.; Chen, T. Y.; Liu, C. Y.; Wang, K. W., The structure-dependent quantum yield of ZnCdS nanocrystals. CrystEngComm 2015, 17, 5032-5037.
    [16] Dai, S.; Siao, C. B.; Chung, S. R.; Wang, K. W.; Pan, X., Developed one-pot synthesis of dual-color CdSe quantum dots for white light-emitting diode application. J. Mater. Chem. C 2018, 6, 3089-3096.
    [17] Huber, D.; Reindl, M.; Huo, Y.; Huang, H.; Wildmann, J. S.; Schmidt, O. G.; Rastelli, A.; Trotta, R., Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun. 2017, 8, 15506.
    [18] Kim, T.; Park, S.; Jeong, S., Diffusion dynamics controlled colloidal synthesis of highly monodisperse InAs nanocrystals. Nat. Commun. 2021, 12, 3013.
    [19] Peng, Z.; Han, X.; Li, S.; Al-Youbi, A. O.; Bashammakh, A. S.; El-Shahawi, M. S.; Leblanc, R. M., Carbon dots: Biomacromolecule interaction, bioimaging and nanomedicine. Coord. Chem. Rev. 2017, 343, 256-277.
    [20] Ferdous, R.; Kawakami, E.; Scarlino, P.; Nowak, M. P.; Ward, D. R.; Savage, D. E.; Lagally, M. G.; Coppersmith, S. N.; Friesen, M.; Eriksson, M. A.; Vandersypen, L. M. K.; Rahman, R., Valley dependent anisotropic spin splitting in silicon quantum dots. Npj Quantum Inf. 2018, 4, 26.
    [21] Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H., Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Adv. Mater. 2015, 27, 7162-7167.
    [22] Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y.-J.; Ohisa, S.; Kido, J., Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681-687.
    [23] Sun, J. Y.; Rabouw, F. T.; Yang, X. F.; Huang, X. Y.; Jing, X. P.; Ye, S.; Zhang, Q. Y., Facile Two-Step Synthesis of All-Inorganic Perovskite CsPbX3 (X=Cl, Br, and I) Zeolite-Y Composite Phosphors for Potential Backlight Display Application. Adv. Funct. Mater. 2017, 27, 1704371.
    [24] Yin, Y.; Hu, Z.; Ali, M. U.; Duan, M.; Gao, L.; Liu, M.; Peng, W.; Geng, J.; Pan, S.; Wu, Y.; Hou, J.; Fan, J.; Li, D.; Zhang, X.; Meng, H., Full‐Color Micro‐LED Display with CsPbBr3 Perovskite and CdSe Quantum Dots as Color Conversion Layers. Adv. Mater. Technol. 2020, 5, 2000251.
    [25] Hardman, R., A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 2006, 114, 165-172.
    [26] Chen, N.; Bai, Z.; Wang, Z.; Ji, H.; Liu, R.; Cao, C.; Wang, H.; Jiang, F.; Zhong, H., P-119: Low Cost Perovskite Quantum Dots Film Based Wide Color Gamut Backlight Unit for LCD TVs. SID Symposium Digest of Technical Papers 2018, 49, 1657-1659.
    [27] Berends, A. C.; de Mello Donega, C., Ultrathin one-and two-dimensional colloidal semiconductor nanocrystals: pushing quantum confinement to the limit. J. Phys. Chem. Lett. 2017, 8, 4077-4090.
    [28] García de Arquer, F. P.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H., Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.
    [29] Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C., Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 2010, 110, 6873-6890.
    [30] Chen, B.; Li, D.; Wang, F., InP Quantum Dots: Synthesis and Lighting Applications. Small 2020, 16, e2002454.
    [31] Rossetti, R.; Nakahara, S.; Brus, L. E., Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 1983, 79, 1086-1088.
    [32] Cui, Z.; Mei, S.; Wen, Z.; Yang, D.; Qin, S.; Xiong, Z.; Yang, B.; He, H.; Bao, R.; Qiu, Y.; Chen, Y.; Zhang, W.; Xie, F.; Xing, G.; Guo, R., Synergistic Effect of Halogen Ions and Shelling Temperature on Anion Exchange Induced Interfacial Restructuring for Highly Efficient Blue Emissive InP/ZnS Quantum Dots. Small 2022, 18, e2108120.
    [33] Pu, Y. C.; Fan, H. C.; Chang, J. C.; Chen, Y. H.; Tseng, S. W., Effects of Interfacial Oxidative Layer Removal on Charge Carrier Recombination Dynamics in InP/ZnSexS1-x Core/Shell Quantum Dots. J. Phys. Chem. Lett. 2021, 12, 7194-7200.
    [34] Calvin, J. J.; Swabeck, J. K.; Sedlak, A. B.; Kim, Y.; Jang, E.; Alivisatos, A. P., Thermodynamic Investigation of Increased Luminescence in Indium Phosphide Quantum Dots by Treatment with Metal Halide Salts. J. Am. Chem. Soc. 2020, 142, 18897-18906.
    [35] Mulder, J. T.; Kirkwood, N.; De Trizio, L.; Li, C.; Bals, S.; Manna, L.; Houtepen, A. J., Developing Lattice Matched ZnMgSe Shells on InZnP Quantum Dots for Phosphor Applications. ACS Appl. Nano Mater. 2020, 3, 3859-3867.
    [36] Liu, P.; Lou, Y.; Ding, S.; Zhang, W.; Wu, Z.; Yang, H.; Xu, B.; Wang, K.; Sun, X. W., Green InP/ZnSeS/ZnS Core Multi‐Shelled Quantum Dots Synthesized with Aminophosphine for Effective Display Applications. Adv. Funct. Mater. 2021, 31, 2008453.
    [37] Mićić, O.; Cheong, H.; Fu, H.; Zunger, A.; Sprague, J.; Mascarenhas, A.; Nozik, A., Size-dependent spectroscopy of InP quantum dots. J. Phys. Chem. B 1997, 101, 4904-4912.
    [38] Chen, B.; Li, D.; Wang, F., InP quantum dots: synthesis and lighting applications. Small 2020, 16, 2002454.
    [39] Kwon, S. G.; Hyeon, T., Formation mechanisms of uniform nanocrystals via hot‐injection and heat‐up methods. Small 2011, 7, 2685-2702.
    [40] Van Embden, J.; Chesman, A. S.; Jasieniak, J. J., The heat-up synthesis of colloidal nanocrystals. Chem. Mater. 2015, 27, 2246-2285.
    [41] Cros-Gagneux, A.; Delpech, F.; Nayral, C.; Cornejo, A.; Coppel, Y.; Chaudret, B., Surface chemistry of InP quantum dots: a comprehensive study. J. Am. Chem. Soc. 2010, 132, 18147-18157.
    [42] Qu, L.; Peng, X., Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049-2055.
    [43] Talapin, D. V.; Gaponik, N.; Borchert, H.; Rogach, A. L.; Haase, M.; Weller, H., Etching of colloidal InP nanocrystals with fluorides: photochemical nature of the process resulting in high photoluminescence efficiency. J. Phys. Chem. B 2002, 106, 12659-12663.
    [44] Bertrand, P., XPS study of chemically etched GaAs and InP. J. Vac. Sci. Technol. 1981, 18, 28-33.
    [45] Calvin, J. J.; Swabeck, J. K.; Sedlak, A. B.; Kim, Y.; Jang, E.; Alivisatos, A. P., Thermodynamic investigation of increased luminescence in indium phosphide quantum dots by treatment with metal halide salts. J. Am. Chem. Soc. 2020, 142, 18897-18906.
    [46] Stein, J. L.; Mader, E. A.; Cossairt, B. M., Luminescent InP quantum dots with tunable emission by post-synthetic modification with Lewis acids. J. Phys. Chem. Lett. 2016, 7, 1315-1320.
    [47] Jeong, B. G.; Chang, J. H.; Hahm, D.; Rhee, S.; Park, M.; Lee, S.; Kim, Y.; Shin, D.; Park, J. W.; Lee, C., Interface polarization in heterovalent core–shell nanocrystals. Nat. Mater. 2022, 21, 246-252.
    [48] Brunetti, V.; Chibli, H.; Fiammengo, R.; Galeone, A.; Malvindi, M. A.; Vecchio, G.; Cingolani, R.; Nadeau, J. L.; Pompa, P. P., InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. Nanoscale 2013, 5, 307-317.
    [49] Song, J. H.; Choi, H.; Pham, H. T.; Jeong, S., Energy level tuned indium arsenide colloidal quantum dot films for efficient photovoltaics. Nat. Commun. 2018, 9, 4267.
    [50] Kirkwood, N.; Monchen, J. O.; Crisp, R. W.; Grimaldi, G.; Bergstein, H. A.; Du Fossé, I.; Van Der Stam, W.; Infante, I.; Houtepen, A. J., Finding and fixing traps in II-VI and III-V colloidal quantum dots: the importance of Z-type ligand passivation. J. Am. Chem. Soc. 2018, 140, 15712-15723.
    [51] Lim, J.; Park, M.; Bae, W. K.; Lee, D.; Lee, S.; Lee, C.; Char, K., Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots. ACS Nano 2013, 7, 9019-9026.
    [52] Haubold, S.; Haase, M.; Kornowski, A.; Weller, H., Strongly luminescent InP/ZnS core-shell nanoparticles. Chemphyschem 2001, 2, 331-334.
    [53] Adam, S.; Talapin, D.; Borchert, H.; Lobo, A.; McGinley, C.; De Castro, A.; Haase, M.; Weller, H.; Möller, T., The effect of nanocrystal surface structure on the luminescence properties: Photoemission study of HF-etched InP nanocrystals. J. Chem. Phys. 2005, 123, 084706.
    [54] Hahm, D.; Chang, J. H.; Jeong, B. G.; Park, P.; Kim, J.; Lee, S.; Choi, J.; Kim, W. D.; Rhee, S.; Lim, J., Design principle for bright, robust, and color-pure InP/ZnSexS1–x/ZnS heterostructures. Chem. Mater. 2019, 31, 3476-3484.
    [55] Li, L.; Reiss, P., One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. Chem. Mater. 2008, 130, 11588-11589.
    [56] Wang, H. C.; Zhang, H.; Chen, H. Y.; Yeh, H. C.; Tseng, M. R.; Chung, R. J.; Chen, S.; Liu, R. S., Cadmium‐Free InP/ZnSeS/ZnS Heterostructure‐Based Quantum Dot Light‐Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m−2. Small 2017, 13, 1603962.
    [57] Ramasamy, P.; Kim, N.; Kang, Y. S.; Ramirez, O.; Lee, J. S., Tunable, bright, and narrow-band luminescence from colloidal indium phosphide quantum dots. Chem. Mater. 2017, 29, 6893-6899.
    [58] Kirkwood, N.; De Backer, A.; Altantzis, T.; Winckelmans, N.; Longo, A.; Antolinez, F. V.; Rabouw, F. T.; De Trizio, L.; Geuchies, J. J.; Mulder, J. T., Locating and controlling the Zn content in In(Zn)P quantum dots. Chem. Mater. 2019, 32, 557-565.
    [59] Pietra, F.; De Trizio, L.; Hoekstra, A. W.; Renaud, N.; Prato, M.; Grozema, F. C.; Baesjou, P. J.; Koole, R.; Manna, L.; Houtepen, A. J., Tuning the lattice parameter of In X Zn Y P for highly luminescent lattice-matched core/shell quantum dots. Acs Nano 2016, 10, 4754-4762.
    [60] Tessier, M. D.; Dupont, D.; De Nolf, K.; De Roo, J.; Hens, Z., Economic and Size-Tunable Synthesis of InP/ZnE (E=S, Se) Colloidal Quantum Dots. Chem. Mater. 2015, 27, 4893-4898.
    [61] Yang, X.; Zhao, D.; Leck, K. S.; Tan, S. T.; Tang, Y. X.; Zhao, J.; Demir, H. V.; Sun, X. W., Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light‐emitting Diodes. Adv. Mater. 2012, 24, 4180-4185.
    [62] Thuy, U. T. D.; Reiss, P.; Liem, N. Q., Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots. Appl. Phys. Lett. 2010, 97, 193104.
    [63] Virieux, H.; Le Troedec, M.; Cros-Gagneux, A.; Ojo, W. S.; Delpech, F.; Nayral, C.; Martinez, H.; Chaudret, B., InP/ZnS nanocrystals: coupling NMR and XPS for fine surface and interface description. J. Am. Chem. Soc. 2012, 134, 19701-19708.
    [64] Stein, J. L.; Holden, W. M.; Venkatesh, A.; Mundy, M. E.; Rossini, A. J.; Seidler, G. T.; Cossairt, B. M., Probing surface defects of InP quantum dots using phosphorus Kα and Kβ X-ray emission spectroscopy. Chem. Mater. 2018, 30, 6377-6388.
    [65] Choi, Y.; Kim, D.; Shin, Y. S.; Lee, W.; Orr, S.; Kim, J. Y.; Park, J., Highly luminescent red-emitting In(Zn)P quantum dots using zinc oxo cluster: Synthesis and application to light-emitting diodes. Nanoscale 2022, 14, 2771-2779.
    [66] Cho, H.; Jung, S.; Kim, M.; Kwon, H.; Bang, J., Effects of Zn impurity on the photoluminescence properties of InP quantum dots. J. Lumin. 2022, 245, 118647.
    [67] Owen, J. S.; Chan, E. M.; Liu, H.; Alivisatos, A. P., Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals. J. Am. Chem. Soc. 2010, 132, 18206-18213.
    [68] Abe, S.; Capek, R. K.; De Geyter, B.; Hens, Z., Reaction chemistry/nanocrystal property relations in the hot injection synthesis, the role of the solute solubility. Acs Nano 2013, 7, 943-949.
    [69] Cui, Z.; Mei, S.; Wen, Z.; Yang, D.; Qin, S.; Xiong, Z.; Yang, B.; He, H.; Bao, R.; Qiu, Y., Synergistic effect of halogen ions and shelling temperature on anion exchange induced interfacial restructuring for highly efficient blue emissive InP/ZnS quantum dots. Small 2022, 18, 2108120.
    [70] de Mello Donegá, C., Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 2011, 40, 1512-1546.
    [71] Boles, M. A.; Ling, D.; Hyeon, T.; Talapin, D. V., The surface science of nanocrystals. Nat. Mater. 2016, 15, 141-153.
    [72] Pokrant, S.; Whaley, K. B., Tight-binding studies of surface effects on electronic structure of CdSe nanocrystals: the role of organic ligands, surface reconstruction, and inorganic capping shells. Eur. Phys. J. D 1999, 6, 255-267.
    [73] Inerbaev, T. M.; Masunov, A. E.; Khondaker, S. I.; Dobrinescu, A.; Plamadă, A.-V.; Kawazoe, Y., Quantum chemistry of quantum dots: Effects of ligands and oxidation. J. Chem. Phys. 2009, 131, 044106 .
    [74] Lee, S.; Sagar, L. K.; Li, X.; Dong, Y.; Chen, B.; Gao, Y.; Ma, D.; Levina, L.; Grenville, A.; Hoogland, S., InP-quantum-dot-in-ZnS-matrix solids for thermal and air stability. Chem. Mater. 2020, 32, 9584-9590.
    [75] Zhang, H.; Hu, N.; Zeng, Z.; Lin, Q.; Zhang, F.; Tang, A.; Jia, Y.; Li, L. S.; Shen, H.; Teng, F., High‐efficiency green InP quantum dot‐based electroluminescent device comprising thick‐shell quantum dots. Adv. Opt. Mater. 2019, 7, 1801602.
    [76] Liu, P.; Lou, Y.; Ding, S.; Zhang, W.; Wu, Z.; Yang, H.; Xu, B.; Wang, K.; Sun, X. W., Green InP/ZnSeS/ZnS core multi‐shelled quantum dots synthesized with aminophosphine for effective display applications. Adv. Funct. Mater. 2021, 31, 2008453.
    [77] Yu, P.; Shan, Y.; Cao, S.; Hu, Y.; Li, Q.; Zeng, R.; Zou, B.; Wang, Y.; Zhao, J., Inorganic solid phosphorus precursor of sodium phosphaethynolate for synthesis of highly luminescent InP-based quantum dots. ACS Energy Lett. 2021, 6, 2697-2703.
    [78] Yu, P.; Cao, S.; Shan, Y.; Bi, Y.; Hu, Y.; Zeng, R.; Zou, B.; Wang, Y.; Zhao, J., Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light Sci. Appl. 2022, 11, 162.
    [79] Yoon, S. Y.; Lee, Y. J.; Yang, H.; Jo, D. Y.; Kim, H. M.; Kim, Y.; Park, S. M.; Park, S.; Yang, H., Performance enhancement of InP quantum dot light-emitting diodes via a surface-functionalized ZnMgO electron transport layer. ACS Energy Lett. 2022, 7, 2247.

    QR CODE
    :::