跳到主要內容

簡易檢索 / 詳目顯示

研究生: 范姜少琪
Shao-Chi Fan Jiang
論文名稱: 不同陽極蝕刻深度之氮化鋁鎵/氮化鎵蕭特基二極體特性分析
指導教授: 辛裕明
Yue-Ming Hsin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 102
中文關鍵詞: 氮化鋁鎵/氮化鎵蕭特基二極體陽極蝕刻
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要針對在矽(111)基板上製作不同陽極蝕刻深度之氮化鋁鎵/氮化鎵蕭特基二極體。一般蕭特基二極體為了降低開關過程中的損耗,降低臨界電壓與保持低的漏電流是相當重要的議題,而本論文將針對降低開啟電壓進行研究。首先,利用TCAD的模擬分析無陽極蝕刻(Device A)、陽極蝕刻深度至AlGaN位障層(Device B)、陽極蝕刻深度超過2DEG介面之蕭特基二極體基本電性。接著探討其製程後的特性表現,利用室溫下的電容-電壓的量測曲線,分析不同陽極蝕刻深度與通道中的2DEG濃度關聯性,以及室溫下順向、逆向電流-電壓特性分析。當陽極蝕刻深度至AlGaN位障層,其臨界電壓(VT )為1.05 V,且藉由陽極端金屬的T型設計分散邊緣的電場,而有較高的崩潰電壓480 V。當陽極蝕刻深度超過2DEG介面,其臨界電壓(VT )達到最低0.75 V。
    也利用變溫來探討氮化鋁鎵/氮化鎵蕭特基二極體順向偏壓及逆向偏壓下的特性,在順向偏壓下藉由不均勻能障模型來計算蕭特基能障,估算蒸鍍金屬後的蕭特基接觸有不均勻的接面。而逆向電流-電壓曲線可以進一步分析漏電流機制,因低溫下缺陷中之載子不易產生變化,而在高溫下載子就容易因為溫度的關係而從缺陷中逃脫。量測得知,漏電流皆會隨著電場和溫度而變化,而在較高逆偏壓下漏電流則與溫度無相依性,而是與電場相關,此種漏電流受溫度及電場影響之電流機制為Frenkel–Poole emission。其中Device B有較大的漏電流,推測原因可能是由於蝕刻後表面不平整及缺陷而造成較大的漏電流,其缺陷能階估算位在導電帶下方0.03 eV。但在Device A中,其缺陷能階估算位在導電帶下方1.19 eV,因只有表面Si3N4的蝕刻導致缺陷的原因不同。


    GaN-based heterostructure lateral Schottky barrier diodes (SBDs) grown on Silicon (111) substrate with various recess depths are investigated in this study. Conduction losses in onset voltage and reverse-bias leakage result in significant limitations to power switching performance of Schottky diodes. First of all, Silvaco TCAD was used to simulate the electrical properties of Schottky barrier diodes with various recess depths. Three diode structures are investigated, Device A is the SBD without recess in AlGaN layer, Device B is the SBD with a 20-nm recess depth in AlGaN layer (1.6 nm left) and Device C is the SBD with whole AlGaN layer removed and recessed to GaN layer. After SBD fabrication, both C-V and I-V characteristics at room temperature are analyzed. The results reveal that Device B shows threshold voltage (VT) of 1.05 V and reverse blocking voltage of 480 V. The SBD with recess through AlGaN to GaN layer demonstrates the lowest VT of 0.75 V.
    Furthermore, temperature dependence of forward and reverse current-voltage characteristics of AlGaN/GaN SBDs are investigated. In forward bias condition, considering the alloy composition fluctuations inherent to low-temperature III-N alloys which results in a Schottky barrier height inhomogeneity, and that the Schottky barrier height follows a Gaussian distribution. By observing the reverse bias leakage current flow, it is possible to find the defect energy levels in AlGaN barrier are quantified by the leakage current model of Frenkel-Poole emission. Frenkel-Poole emission refers to electric-field-enhanced thermal emission from a trap state into a continuum of electronic states. Device B has larger leakage current due to stronger surface roughness (damages) that the trap state to be located 0.03 eV below the conduction-band edge. In the Device A, due to the in-situ SiN was removed before gate metallization that the trap state to be located 1.19 eV below the conduction-band edge.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 氮化鎵蕭特基二極體市場發展與應用 3 1.3 氮化鎵蕭特基二極體國內外相關研究成果 5 1.4 研究動機與目的 18 1.5 論文架構 19 第二章 氮化鋁鎵/氮化鎵蕭特基二極體於矽基板上之結構設計及元件模擬分析 20 2.1 前言 20 2.2氮化鋁鎵/氮化鎵於矽基板之磊晶結構與材料分析 20 2.3氮化鋁鎵/氮化鎵蕭特基二極體於矽基板之元件製作 26 2.4氮化鋁鎵/氮化鎵蕭特基二極體之元件特性模擬 30 2.5結論 34 第三章 氮化鋁鎵/氮化鎵蕭特基二極體室溫之電性量測與分析 35 3.1前言 35 3.2氮化鋁鎵/氮化鎵蕭特基二極體之電容-電壓特性分析 35 3.3氮化鋁鎵/氮化鎵蕭特基二極體之電流-電壓特性分析 43 3.3.1 氮化鋁鎵/氮化鎵蕭特基二極體順向導通特性 43 3.3.2氮化鋁鎵/氮化鎵蕭特基二極體逆向崩潰特性 53 3.4結論 57 第四章 氮化鋁鎵/氮化鎵蕭特基二極體變溫之電性量測與分析 58 4.1前言 58 4.2氮化鋁鎵/氮化鎵蕭特基二極體變溫萃取蕭特基能障 58 4.3氮化鋁鎵/氮化鎵蕭特基二極體逆向漏電流分析 68 4.4結論 74 第五章 結論與未來展望 75 5.1結論 75 5.2未來展望 76 參考文獻 77 附錄I -氮化鋁鎵/氮化鎵蕭特基二極體與高電子遷移率電晶體製作流程 81 附錄II -氮化鋁鎵/氮化鎵高電子遷移率電晶體直流特性 85

    [1] J. Millan, P. Godignon, A. Perez-Tomas, “Wide Band Gap Semiconductor Devices for Power Electronics,” AUTOMATIKA, Vol. 53, pp. 107–116, February 2012.
    [2] A. Morya, M. Moosavi, M. C. Gardner and H. A. Toliyat, “Applications of Wide Bandgap (WBG) Devices in AC Electric Drives: A Technology Status Review,” IEEE IEMDC Conference, August 2017.
    [3] Panasonic, Industrial Device & Solutions, Products, Schottky Barrier Diode.
    [4] A. P. Zhang, J. W. Johnson, B. Luo, F. Ren, S. J. Pearton, S. S. Park, Y. J. Park and J.-I. Chyi, “Vertical and lateral GaN rectifiers on free-standing GaN substrates,” Applied Physics Letters, Vol. 79, pp. 1555–1557, September 2001.
    [5] A. P. Zhang, G. Dang, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. M. Redwing, X. A. Cao and S. J. Pearton, “Al composition dependence of breakdown voltage in AlxGa1-xN Schottky rectifiers,” Applied Physics Letters, Vol. 76, pp. 1767–1769, March 2000.
    [6] A. P. Zhang, G. Dang, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. M. Redwing, H. Cho and S. J. Pearton, “Temperature dependence and current transport mechanisms in AlxGa1-xN Schottky rectifiers,” Applied Physics Letters, Vol. 76, pp. 3816 –3818, June 2000.
    [7] A. P. Zhang, J. W. Johnson, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. M. Redwing, K. P. Lee and S. J. Pearton, “Lateral AlxGa1-xN power rectifiers with 9.7 kV reverse breakdown voltage,” Applied Physics Letters, Vol. 78, pp. 823–825, February 2001.
    [8] E. B. Treidel, O. Hilt, R. Zhytnytska, A. Wentzel, C. Meliani, J. Würfl and G. Tränkle, “Fast-Switching GaN-Based Lateral Power Schottky Barrier Diodes With Low Onset Voltage and Strong Reverse Blocking,” IEEE Electron Device Letters, Vol. 33, No. 3, pp. 357– 359, March 2012.
    [9] Y.-W. Lian, Y.-S. Lin, J.-M. Yang, C.-H. Cheng and S. S. H. Hsu, “AlGaN/GaN Schottky Barrier Diodes on Silicon Substrates With Selective Si Diffusion for Low Onset Voltage and High Reverse Blocking,” IEEE Electron Device Letters, Vol. 34, No. 8, pp. 981–983, August 2013.

    [10] J.-G. Lee, B.-R. Park, C.-H. Cho, K.-S. Seo and H.-Y. Cha, “Low Turn-On Voltage AlGaN/GaN-on-Si Rectifier With Gated Ohmic Anode,” IEEE Electron Device Letters, Vol. 34, No. 2, pp. 214–216, February 2013.
    [11] H.-S. Lee, D. Y. Jung, Y. Park, J. Na, H.-G. Jang, H.-S. Lee, C.-H. Jun, J. Park, S. C. Ko, S.-O. Ryu and E. S. Nam, “0.34 VT AlGaN/GaN-on-Si Large Schottky Barrier Diode With Recessed Dual Anode Metal,” IEEE Electron Device Letters, Vol. 36, No. 11, pp. 1132–1134, November 2015.
    [12] Y. Yang, Q. Zhou, Y. Shi, Z. Wang, L. Liu, K. Hu, R. Zhu, W. Chen, and B. Zhang, “0.3 VT/1.1 kV AIGaN/GaN Lateral Power Diode with MIS-Gated Hybrid Anode on Silicon Substrate,” IEEE ICSICT Conference, October 2016.
    [13] S. Lenci, B. De Jaeger, L. Carbonell, J. Hu, G. Mannaert, D. Wellekens, S. You, B. Bakeroot and S. Decoutere, “Au-Free AlGaN/GaN Power Diode on 8-in Si Substrate With Gated Edge Termination,” IEEE Electron Device Letters, Vol. 34, No. 8, pp. 1035–1037, August 2013.
    [14] S. C. Lee, M. W. Ha, J.C. Her, S.S. Kim, J.Y. Lim, K.S. Seo and M.K. Han, “High Breakdown Voltage GaN Schottky Barrier Diode employing Floating Metal Rings on AlGaN/GaN Hetero-junction,” IEEE International Symposium on Power Semiconductor Devices, May 2005.
    [15] M. Zhu, B. Song, M. Qi, Z. Hu, K. Nomoto, X. Yan, Y. Cao, W. Johnson, E. Kohn, D. Jena and H. G. Xing, “1.9-kV AlGaN/GaN Lateral Schottky Barrier Diodes on Silicon,” IEEE Electron Device Letters, Vol. 36, No. 4, pp. 375–377, April 2015.
    [16] C.-W. Tsou, K.-P. Wei, Y.-W. Lian and Shawn S. H. Hsu, “2.07-kV AlGaN/GaN Schottky Barrier Diodes on Silicon With High Baliga’s Figure-of-Merit,” IEEE Electron Device Letters, Vol. 37, No. 1, pp. 70–73, January 2015.
    [17] Z. Lin, W. Lu, J. Lee, D. Liu, J. S. Flynn and G. R. Brandes, “Barrier heights of Schottky contacts on strained AlGaN/GaN heterostructures: Determination and effect of metal work functions,” Applied Physics Letters, Vol. 82, No.24, June 2003.
    [18] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L.F.Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, Vol. 85, No. 6, pp. 3222-3233, March 1999.
    [19] Yao Yao, Jian Zhong, Yue Zheng, Fan Yang, Yiqiang Ni, Zhiyuan He, Zhen Shen, Guilin Zhou, Shuo Wang, Jincheng Zhang, Jin Li, Deqiu Zhou, Zhisheng Wu, Baijun Zhang, and Yang Liu, “Current transport mechanism of AlGaN/GaN Schottky barrier diode with fully recessed Schottky anode,” Japanese Journal of Applied Physics, Vol. 54, No.12, pp. 011001, December 2015.
    [20] Y. Zhou, D. Wang, C. Ahyi, C. C. Tin, J. Williams, M. Park, N. M. Williams, A. Hanser, E. A. Preble, “Temperature-dependent electrical characteristics of bulk GaN Schottky rectifier,” Journal of Applied Physics, Vol. 101, No. 2, pp. 024506 - 024506-4, January 2007.
    [21] Y. H. Choi, J. Lim, K. H. Cho, M.K. Han, “High Voltage AlGaN/GaN Schottky Barrier Diode Employing the Inductively Coupled Plasma-Chemical Vapor Deposition SiO2 Passivation, “ IEEE International Conference on Power Electronics, pp. 71 - 73, October 2007.
    [22] Matthew A. Laurent, Geetak Gupta, Donald J. Suntrup III, Steven P. DenBaars, and Umesh K. Mishra, “Barrier height inhomogeneity and its impact on (Al,In,Ga)N Schottky diodes,” Journal of Applied Physics, Vol. 119, No. 6, pp. 064501-064501-7, February 2016.
    [23] F. Iucolano, F. Roccaforte, F. Giannazzo, V. Raineri, “Barrier inhomogeneity and electrical properties of Pt/GaN Schottky contacts,” Journal of Applied Physics, Vol. 102, No. 11, pp. 113701-113701-8, December 2007.
    [24] Z. Tekeli, Ş. Altındal, M. Çakmak, S. Özçelik, D. Çalışkan, E. Özbay, “The behavior of the I-V-T characteristics of inhomogeneous Ni/Au -Al0.3Ga0.7N/AlN/GaN heterostructures at high temperatures,” Journal of Applied Physics, Vol. 102, No. 5, pp. 054510-054510-8, September 2007.

    [25] H. Zhang, E. J. Miller, and E. T. Yua, “Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N/GaN grown by molecular-beam epitaxy,” Journal of Applied Physics, Vol. 99, pp. 023703-054510-6, Jonuary 2006.
    [26] Koteswara Rao Peta and Moon Deock Kim, “Leakage current transport mechanism under reverse bias in Au/Ni/GaN Schottky barrier diode,” Superlattices and Microstructures, Vol. 113, pp. 678-683, December 2018.

    QR CODE
    :::