跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張育誠
Yu-Cheng Chang
論文名稱: 微型光學讀取頭之元件
Optical Element of Micro-Optical Pickup Head
指導教授: 張正陽
Jeng-Yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 91
語文別: 中文
論文頁數: 112
中文關鍵詞: 電漿輔助化學氣相沉積45°反射鏡面感應耦合電漿離子蝕刻氮化矽低壓化學氣相沉積全像光學元件氫氧化鉀
外文關鍵詞: HOE, KOH, 45° reflector, ICP, Silicon Nitride, LPCVD, PECVD
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們實驗主要將微光機電系統(Optical MEMS)之技術,應用在光學讀取頭上,製作出微光學元件,包含Grating、Hologram optical element(HOE)和Fresnel lens等等。
    本論文主要將光學讀取頭微小化和積體化,且已創新的架構來執行。目前製作微光學元件的方式有很多種,其主要利用SiNx membrane和通道(Via)的基本結構,來縮小整體光學讀取頭;並在SiNx membrane上,利用乾式蝕刻製作微光學元件,是第一次嘗試,其光學效果與傳統光學元件相似。且利用半導體製程技術,可以做到數微米的線寬,因此可以多利用此方法,運用在不同的光學元件上。
    另外,我們運用矽基板的晶格結構和濕式蝕刻的技術,蝕刻出45˚的反射鏡面,方便雷射二極體(LD)能夠順利的達到光碟片,且能順利由光接收器(PD)讀取正確的資料,以上的製作方式與光學模擬相符合,已證明可行性,日後的工作就是精確對準封裝的問題了。


    A new optical pickup head is introduced, with its optical components fabricated by the microoptoelectromechanical (MOEMS) technology. Optical elements, such as grating, holographic optical element and Fresnel lens, are made on the SiN membrane. The SiN film was deposited on the silicon wafer by low pressure chemical vapor deposition (LPCVD) or plasma enhanced chemical vapor deposition (PECVD). Its advantages include the high transmission efficiency, light weight, and easy packaging for this new proposed optical pickup head.

    論文摘要……………………………………………………………… Ⅰ 目錄…………………………………………………………………… Ⅱ 圖表索引……………………………………………………………… Ⅵ 第一章 緒論………………………………………………………… 1 第二章 光學讀取頭之微光學元件的介紹………………………… 7 2.1 光柵(Grating)…………………………………………… 7 2.2 全像光學元件(Holographic Optical Element,HOE)………8 2.3 Fresnel Lens………………………………………………… 10 2.4 設計微光學讀取頭………………………………………… 11 第三章 MEMCAD 模擬微光學元件之微架構……………………12 3-1 製程模擬…………………………………………………… 13 第四章 微光學元件之製程設備……………………………………16 4.1 電漿的基本原理…………………………………………… 16 4.2 高密度電漿化學氣相沉積系統(PECVD)………………… 17 4.3 感應耦合電漿離子蝕刻(ICP)………………………… 19 第五章 薄膜應力之簡介與特性……………………………………23 5-1 薄膜應力來源……………………………………………… 23 5-2 PECVD氮化矽薄膜介紹………………………………… 25 5-3 低應力氮化矽薄膜之實驗步驟…………………………… 29 5-4 殘留應力與沉積條件的關係……………………………… 30 5-4-1 SiH4(Silane)和NH3的流量比的影響…………… 31 5-4-2 RF功率的影響……………………………………… 32 5-4-3 基板溫度方面……………………………………… 33 5-4-4 反應室的壓力影響………………………………… 34 5-4-5 N2與Ar的影響……………………………………… 35 5-4-6 電極板距離的影響………………………………… 35 5-4-7 氦氣電漿(helium plasma)……………………………35 5-5 退火實驗方面……………………………………………… 36 5-6 PECVD氮化矽薄膜特性與濕乾式蝕刻方面………………38 5-7 沉積參數對折射率的影響………………………………… 39 第六章 乾式蝕刻之高密度電漿蝕刻低應力氮化矽………………40 6-1 基本乾式蝕刻技術…………………………………………40 6-1-1 物理性蝕刻………………………………………… 40 6-1-2 化學性蝕刻………………………………………… 41 6-1-3 物理和化學混合蝕刻……………………………… 41 6-2 乾式蝕刻製程應用…………………………………………42 6-2-1 ASE製程…………………………………………… 43 6-3 高蝕刻率SiO2和SiNx………………………………………47 6-4 實驗參數……………………………………………………49 第七章 濕式蝕刻於矽微加工之原理與應用………………………62 7-1 濕式蝕刻於矽體型微加工之原理…………………………62 7-2 矽晶格方向…………………………………………………64 7-3 非等向性蝕刻所用的蝕刻液………………………………66 7-4 利用濕式蝕刻製作45˚反射鏡面………………………… 70 7-4-1 以本身的(100)矽基板………………………………71 7-4-2 (100)矽基板有傾斜9.74˚……………………………77 7-5 降低蝕刻後的表面粗糙度………………………………… 79 7-6 設計LD和PD在Si bench相關位置………………………80 第八章 微光學元件堆疊封裝………………………………………82 8-1 利用表面張力完成自動對準……………………………… 82 第九章 光學讀取頭之微光學元件的製作…………………………86 9-1 製作簡介……………………………………………………86 9-2 元件製程步驟………………………………………………86 9-2-1 矽基板清洗………………………………………… 87 9-2-2 PECVD沉積SiNx薄膜………………………………88 9-2-3 微影(photolithography)………………………………88 9-2-4 蝕刻(etching)………………………………………91 9-2-5 去除光阻(remove photoresistor)……………………92 9-2-6 封裝(Package)………………………………………92 第十章 微光學元件之量測與效果……………………………… 101 10-1 對光柵(Grating)作量測與效果…………………………101 10-2 對全像光學元件(HOE)作量測與效果…………………104 10-3 對Fresnel Lens作量測與效果………………………… 105 第十一章 結論與心得…………………………………………… 107 第十二章 參考文獻……………………………………………… 109

    [1] R. M. Tiggelaar, T. T. Veenstra, R. G. P. Sanders, J. G. E. Gardeniers, M. C. Elwenspoek, A. Van and Berg, “A light detection cell to be used in a micro analysis system for ammonia”, 331-339, Talanta 56, 2002.
    [2] Masayuki Sekimura, “Method for manufacturing a functional device by forming 45-degree surface on (100)silicon”, Patent No.:US 6,417,107 B1, Date of Patent:Jul. 9, 2002.
    [3] Carola Strandman, Lars Rosengren, Hakan G. A. Elderstig, and Ylva Backlund, “Fabrication of 45˚ Mirrors Together with Well-define V-Grooves Using Wet Anisotropic Etching of Silicon”, Journal of Microelectromechanical system, Vol. 4, No. 4, 213 -219, December 1995.
    [4] Irena Zubel, Malgorzata Kramkowska, “The effect alcohol additives on etching characteristics in KOH solutions”, Sensors and Actuators A 101, 225-261, 2002.
    [5] Marc Madou, “Fundamentals of microfabrication”, CRC Press, “Wet Bulk Micromachining”, 145-215, 1997.
    [6] Myung-Chan Jo, Sang-Kwon Park, Sang-Joon Park, “A study on resistance of PECVD silicon nitride thin film to thermal stress-induced cracking”, Applied Surface Science 140, 12-18, 1999.
    [7] M. Orfert, K. Richter, “Plasma enhanced chemical vapor deposition of SiN-films for passivation of three-dimensional substrates”, Surface and Technology, 622-628, 1999.
    [8] Jacqueline H. Hines, Donald C. Malocha, Kalpathy B. Sundaram, Kevin J. Casey, and Kwang R. Lee, “Deposition Parameter Studies and Surface Acoustic Wave Characterization of PECVD Silicon Nitride Films on Lithium Niobate”, IEEE, Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, VOL. 42, NO. 3, 397-403, May 1995.
    [9] Klaus K. Schuegraf, “Handbook of Thin-Film Deposition Processes and Techniques”, Principles, Methods, Equipment and Applications, Noyes Publication, 124-126, 1988.
    [10] Weast RC. CRC, “Handbook of Chemistry and Physics”, 76th edition. Boca Raton, FL: CRC Press, 1995-1996.
    [11] G. Caliano, F. Galanello, A. Carotenuto, M. Pappalardo, V. Foglietti and N. Lamberti, “Micromachined Ultrasonic Transducers using Silicon Nitride Membrane Fabricated in PECVD Technology”, IEEE, 963-967, 2000.
    [12] S. S. He and V. L. Shannon, Sharp Microelectronics Technology, “Hydrogen Diffusion and redistribution in PECVD Si-Rich Silicon Nitride during rapid Thermal Annealing”, Solid-State and Integrated Circuit Technology, 1995 4th International Conference on, 269 -271, 24-28 Oct 1995.
    [13] Ronald M. Kubacki, “Low Temperature plasma Deposition of Silicon Nitride to Produce Ultra-Reliable, High Performance, Low Cost Sealed Chip-on-Board (SCOB) Assemblies”, IEEE, 273-280, 1994.
    [14] M. Klanjesk Gunde, M. Macek, “The relationship between the macroscopic properties of PECVD silicon nitride and oxynitride layers and the characteristics of their networks”, Appl. Phys. A 74 181-186, 2002.
    [15] J. Yta, M. Janani, L. E Camilletti, A. Kar-Roy, Q. Z. Liu, C. Nguyen, M. D. Woo, J. Hander, P. Van Cleemput, “Comparison between HDP CVD and PECVD Silicon Nitride for Advanced Interconnect Applications”, IEEE, 76-78, 2000.
    [16] Tabata O., Kawahata K., Sugiyanma S. and Igarashi I., “Mechanical Property Measurements of Thin Films Using Load-Deflection of Composite Rectangular Membrane”, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, Proceedings, pp.152-156, 1989.
    [17] Gregory T. A. Kovacs, “Micromachined Transducers Sourcebook”, McGraw-Hill Companies, 81-83, 2000.
    [18] K. J. Winchester and J. M. Dell, “Nano-Indentation Characterization of PECVD Silicon Films”, IEEE, 117-120, 2000.
    [19] Tonya M. Klein, Ashfaqul I. Chowdhury, Henry H. Lamb, and Gregory N. Parsons, “Silicon Nitride PECVD at Low Temperature:Film Properties and Plasma Analysis”.
    [20] Mohammad Aslam, Bruce E. Artz, Steven L. Kaberline, and Thomas J. Prater, “A Comparison of Cleaning Procedures for Removing Postassium from Wafer Exposed to KOH”, IEEE Transactions on electron device, VOL. 40, NO. 2, 1993.
    [21] J. Bhardwaj, H. Ashraf, J. Hopkins, I. Johnston, S. McAuley, S. Hall, G. Nicholls, L. Atabo, A. Hynes, C. Welch, A. Barker, B. Gunn, L. Lea, E. Guibarra, S. Watcham, “Advances in High Rate Silicon and Oxide Etching using ICP”.
    [22] Masafumi Ito, Kiyoshi Kamiya, Masaru Hori, and Toshio Goto, “Substrate reactions of Silicon nitride in a highly selective etching process of silicon oxide over silicon nitride”, JOURNAL OF APPLIED PHYSICS, VOLUME 91, NUMBER 5, 3452-3458, 2002.
    [23] J. Kiihamaki, H. Kattelus, J. Karttunen, S. Franssila, “Depth and profile control in plasma etched MEMS structure”, Sensors and Actuators 82, 234-238, 2000.
    [24] Kenji Tokoro, Daisuke Uchikawa, Mitsuhiro Shikida, and Kazuo Sato, “Anisotropic Etching Properties of Silicon in KOH and TMAH Solutions”, IEEE, 65-70, 1998.
    [25] O. Tabata, “Anisotropy and Selectivity control of TMAH”, The 11th Int. Con. On Micro Electro Mechanical System (MEMS98), Heidelberg Germany, 229-233, 1998.
    [26] J. T. Sheu, M. H. Chiang, S. Su, “Fabrication of intermediate mask for deep X-ray lithography”, Microsystem Technologies 4, 74-76, 1998.
    [27] Rodica Iosub, Carmen Moldovan, M. Modreanu, “Silicon membranes fabrication by wet anisotropic etching”, Sensors and Actuators A 99, 104-111, 2002.
    [28] Masayuki Sekimura, “Anisotropic etching of surfactant-added TMAH solution”, 12th IEEE International Conference on , Micro Electro Mechanical Systems, 1999. MEMS ''99, 650-655, 1999.
    [29] J. T. Sheu, K. S. You, C. H. Wu, and K. M. Chang, “Optimization of KOH Wet Etching Process in Silicon Nitride Nanofabrication”, IEEE-NANO, October 29, 213-217, 2001.
    [30] Stephen F. Jacobs and Raymond K. Kostuk, “Some Experiment on Semiconductor Laser Characteristics”, IEEE Transactions on Education, VOL. 35, NO. 2, May, 1992.
    [31] Meng-Yu Wu, Yi Chiu, Han-Ping Shieh, Wensyang Hsu, Hsueh-Liang Chou, “Fabrication of Planar integrated optical pick-up heads”, Optics and Photonics Taiwan’02, December 12-13, 415-417, 2002.
    [32] R. Ramesham, C. D. Ellis, J. D. Olivas, S. Bolin, “Fabrication of diamond membrances for MEMS using reactive ion etching of silicon”, Thin Solid Films 330, 62-66, 1998.
    [33] Stephen D. Senturia, “Microsystem Design”, KLUWER ACADEMIC PUBLISHERS, 61-65, 2001.

    QR CODE
    :::