跳到主要內容

簡易檢索 / 詳目顯示

研究生: 丁君強
Chun-Chiang Ting
論文名稱: 含鋁中孔洞分子篩之結構鑑定與催化
Characterization and Catalytic Activity of Aluminum-containing Mesoporous Silica : A Comparative Study of Direct Synthesisand Post-synthesis methods
指導教授: 高憲明
Hsien-Ming Kao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 91
語文別: 中文
論文頁數: 135
中文關鍵詞: 直接合成法中孔洞分子篩後修飾法
外文關鍵詞: SBA-15, MCM-41, post-synthesis, direct-synthesis
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以(NH4)3AlF6 水溶液為試劑在pH 值為9.3的環境下在室溫中反應,藉由後合成法將鋁植入中孔洞分子篩 MCM-41 及 SBA-15 的骨架之中。同時也藉由直接合成法以 (NH4)3AlF6 為試劑將鋁植入中孔洞分子篩MCM-41的骨架之中研究植鋁後的結構及酸性活性的變化。在此篇研究中可以看到藉由直接合成法植鋁於中孔洞分子篩 MCM-41的結構中時,在低矽鋁比 (Si/Al = 2.5) 的條件下其仍能維持六角柱狀的結構排列並且有很強的布忍斯特酸酸性(Brǿnsted acid) 位置及不錯的酸性催化能力。植鋁後的中孔洞分子篩,可藉由 27Al MAS NMR 來觀測所植入的鋁在分子篩結構中的狀況,同時也以 ICP、XRD 及氮氣等溫吸/脫附儀來量測在所植入鋁含量不同的環境下的結構變化,並藉由酸性催化裂解cumene 的反應來探討植鋁後分子篩的酸性變化。在此研究中結合兩核種使用雙頻共振NMR的技術,如 1H {27Al}TRAPDOR MAS NMR 來探討藉由植鋁所產生的布忍斯特酸酸性位置的產生。並且可以看到不論是藉由直接合成法或是後修飾法將鋁植入中孔洞分子篩結構之中的含鋁觸媒分子篩,其表面積、孔洞體積以及孔洞直徑均會隨所植入的鋁含量增加而有遞減的趨勢。並且在低矽鋁比的條件下,不論是直接合成法或後修飾法所得到的含鋁中孔洞分子篩 (Al-MCM-41-2.5/MCM-41-Al-2.5/SBA-15Al-5)仍能維持其六角柱狀的結構排列。


    Incorporation of aluminum into siliceous framework of MCM-41 and SBA-15 with post-synthesis method has been achieved by reacting mesoporous materials with an aqueous (NH4)3AlF6 solution at pH about 9.3 at room temperature. Aluminosilicate MCM-41 materials prepared by direct-synthesis alumination using (NH4)3AlF6 as the aluminum source exhibit remarkably high hexagonal structure order and possess stronger Brǿnsted acid sites compared to the parent materials. The states of Al in the Al-containing materials are analyzed by MAS NMR, the detailed properties of the materials under different aluminum content are characterized by ICP, XRD, N2 adsorption, and the catalytic cracking activity was tested in the cumene cracking reaction. Alumination generates Brǿnsted acid site which can be proved by 1H{27Al} TRAPDOR NMR, showing that well-developed Brǿnsted acid site at chemical shift of 3.9 ppm (SBA-15-Al-5, Si/Al = 32.8 by ICP). Irrespective of the preparation method, the surface area, pore volume and pore diameter of Al- containing mesoporous materials decrease with increasing Al content. The Al-MCM-41 (Si/Al = 2.5 in gel) and SBA-15-Al (Si/Al = 5 in gel) showed a high and durable acidity activity in the cracking reaction of cumene. The high level Al incorporated (in gel) into mesoporous structure (Al-MCM-41-2.5, SBA-15-Al-5) with direct-synthesis or post-synthesis method still retain the hexagonal structure order and without any significant degradation in the textural properties of MCM-41 and SBA-15.

    中文摘要…………………………………………………………………… I 英文摘要…………………………………………………………………… III 目錄………………………………………………………………………… IV 表目錄……………………………………………………………………… VIII 圖目錄……………………………………………………………………… X 第一章 緒論…………………………………………………………… 1 1.1前言…………………………………………………………………… 1 1.1.1中孔洞分子篩的發展背景……………………………………… 1 1.1.2 中孔洞分子篩的形成機制……………………………………… 4 1.1.2.1 界面活性劑的微包性質介紹……………………………… 5 1.1.2.2 純矽中孔洞分子篩的合成機制介紹……………………… 8 1.1.2.2.1液晶模板機制 (Liquid Crystal Templating Mechanism) …………………………………………… 8 1.1.3 分子篩觸媒酸性及觸媒裂解之反應機構的介紹……………………………… 14 1.1.3.1 酸性來源、酸強度及酸數量……………………………… 15 1.1.3.2 酸度和催化活性之關連…………………………………… 17 1.1.3.3 觸媒裂解之反應機構……………………………………… 17 1.1.4 固態核磁共振 (Solid-state NMR) 介紹……………………………………… 18 1.1.4.1 Zeeman 作用力……………………………………… 21 1.1.4.2 非均向化學位移 (Chemical Shift Anisotropy)…………. 21 1.1.4.3 偶極-偶極交互作用力 (Dipole-Dipole interactions)…… 22 1.1.4.4 四極矩作用力 (Quadrupolar Interactions)……………… 22 1.1.4.5 魔角旋轉 (Magic Angle Spinning)……………………………………… 23 1.1.4.6 核磁共振光譜 (NMR) 在多孔性物質的應用………… 24 1.1.4.7 27Al NMR 光譜………………………………………… 24 1.1.4.8 1H{27Al} TRAPDOR (Transfer of Population in Double Resonance) NMR 實驗………………………………… 25 1.2 文獻回顧…………………………………………………………… 26 1.2.1 含鋁 MCM-41 中孔洞分子篩………………………………… 26 1.2.2 含鋁 SBA-15 中孔洞分子篩………………………………… 31 1.3 研究動機與目的…………………………………………………… 35 第二章 實驗部分…………………………………………………………… 36 2.1化學藥品……………………………………………………………… 36 2.2實驗儀器……………………………………………………………… 37 2.3 MCM-41 及 SBA-15 分子篩的合成及鑑定……………………… 37 2.3.1 MCM-41 及 SBA-15 分子篩的合成………………………… 37 2.3.2 MCM-41 及 SBA-15 分子篩的鑑定…………………………… 41 2.3.2.1 X-光粉末繞射儀 (X-ray powder diffactometer;XRD)…… 41 2.3.2.2 固態核磁共振光譜儀 (MAS-Solid State NMR)………… 42 2.3.2.2.1 27Al MAS NMR 實驗……………………………………42 2.3.2.2.2 1H-27Al TRAPDOR NMR 實驗………………………… 43 2.3.2.3 氮氣等溫吸附/脫附測量 (N2 adsorption/desorption isotherm).………………………………………………… 44 2.3.2.4 觸媒活性測試 (Catalytic Activity Testing)………………… 47 2.3.3.4.1 氣相層析儀 (Gas Chromatography)………………… 47 2.3.3.4.2觸媒酸性活性測試 (Cumene 裂解反應).…………… 49 2.3.2.5 感應耦合電漿原子發射光譜儀 (ICP-AES)……………… 51 第三章 結果與討論………………………………………………………… 53 3.1 SBA-15-Al-x (後修飾法)…………………………………………… 53 3.1.1 pH 值對 (NH4)3AlF6 水溶液之 19F NMR 光譜的影響……… 53 3.1.2 XRD 的結果…………………………………………………… 57 3.1.3 27Al MAS NMR 光譜的結果……………………………………… 60 3.1.4 1H/27Al TRAPDOR NMR 光譜的結果………………………… 63 3.1.5 氮氣等溫吸附/脫附量測的結果………………………………… 66 3.1.6觸媒酸性測試的結果……………………………………………… 73 3.2 Al-MCM-41-x (直接合成法)………………………………………… 81 3.2.1 XRD 的結果…………………………………………………… 81 3.2.2 27Al MAS NMR 光譜的結果…………………………………… 87 3.2.3 氮氣等溫吸附/脫附量測的結果……………………………… 89 3.2.4 觸媒酸性測試的結果…………………………………………… 93 3.3 MCM-41-Al-x (後修飾法)…………………………………………… 97 3.3.1 XRD 的結果…………………………………………………… 97 3.3.2 27Al MAS NMR 光譜的結果…………………………………… 103 3.3.3 氮氣等溫吸附/脫附量測的結果……………………………… 105 3.3.4 觸媒酸性測試的結果…………………………………………… 109 3.4 SBA-15-Ga-x (後修飾法)…………………………………………… 111 3.4.1 XRD 的結果…………………………………………………… 111 3.4.2 71Ga MAS NMR 光譜的結果…………………………………… 115 3.4.3 氮氣等溫吸附/脫附量測的結果……………………………… 118 3.4.4 觸媒酸性測試的結果…………………………………………… 121 第四章 結論………………………………………………………………… 127 參考文獻…………………………………………………………………… 129

    1.D. E. W. Vaughan, Catal. Today, 1998, 2, 187.
    2.J. S. Dailey and T. J. Pinnavaia, Chem. Mater., 1992, 4, 855.
    3.T. Yanagaisawa, K. Kuroda and C. Kato, Bull. Chem. Soc. Japn., 1988, 61, 3743.
    4.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuil and J. S. Beck, Nature, 1992, 359, 710.
    5.J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonwicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 2002, 114, 10834.
    6.A. Sayari, Chem. Mater., 1996, 8, 1840.
    7.Neumann and K. Khenkin, Chem. Commun., 1996, 23, 2643.
    8.B. Charkaborty, A. C. Pulikottil and B. Viswanathan, Catal. Lett., 1996, 39, 63.
    9.M. Harthmann, A. Popll and L. Kenvan, J. Phys. Chem., 1996, 100, 9906.
    10.A. Corma, M. T. Navarro, J. Prez-Pariente and F. Sanchez, Stud. Surf. Sci. Catal., 1994, 84, 69.
    11.J. S. Reddy and A. Sayari, Chem. Commun., 1995, 2231.
    12.C.-G. Wu and T. Bein,. Science, 1994, 264, 1757.
    13.C.-G. Wu and T. Bein, Science, 1994, 266, 1013.
    14.C.-G. Wu and T. Bein, Chem. Mater., 1994, 6, 1109.
    15.(a) Y. S. Lee, D. Surjadi and J. F. Rathman, Langmuir, 1996, 12, 6202. (b) C. H. Ko and R. Ryoo, J. Chem. Soc., Chem., 1996, 2467.
    16.S. C. Tsang, J. J. Davis, M. L. H. Green., H. A. O. Hill, Y. C. Leung and P. j. Sadler, J. Chem. Soc., Chem. Commun., 1995, 1803.
    17.T. Abe, Y. Tachibana, T. Uemtsu and M. Iwamoto, J. Chem. Soc., Chem. Commun., 1995, 1617.
    18.K. Busio, J. Janchen, J. H. C. van Hooff, Microporous Mater., 1995, 5, 13.
    19.Z. Luan, W. Zhou, C.-F. cheng, J. Klinowski, J. Chem. Soc. Faraday Trans., 1996, 91, 5161.
    20.H. Kosslick, G. Lischke, G. Walther, W. Storek, A. Martin, R. Fricke, Microporous Mater., 1997, 9, 13.
    21.J. Weglarski, J. Datka, H. He, J. Kilnowski, Faraday Trans., 1996, 92, 5161.
    22.R. Mokaya, W. Jones, Chem. Commun., 1996, 983.
    23.Xiu S. Zhao, G. Q. (Max) Lu, and Graeme J. Millar, Ind. Eng. Chem. Res., 1996, 35, 2076.
    24.IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem. 1972, 31, 578
    25.(a) C. T. Kresge, M. E. Leonowicz, W. J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710-712; (b) J.S. Beck, J. C. vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olsen, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J.L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834-10843; (c) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli (Mobil Oil Corp.), US-A 5098684, 1992 【Chem. Abstr. 1992, 177, 72621】.
    26.J. C. Vartuli, K. D. Schmitt, C. T. Kresge, W. J. Roth, M. E. leonowicz, S. B. McCullen, S. D. Hellring, J. S. Beck, J. L. Schlenker, D. H. Olsen, E.W. Sheppard, Chem. Mater., 1994, 6, 2317-2326.
    27.J. C. Vartuli, C. T. Kresge, W. J. Roth, S. B. McCullen, J. S. Beck, K. D. Schmitt, M. E. Leonowicz, J. D. Lutner, E. W. Sheppard in Proceedings of the 209th ACS National Meeting, Division of Petroleum Chemistry 1995, pp.21-25.
    28.J. C. Vartuli, C. T. Kresge, W. J. Roth, S. B. McCullen, J. S. Beck, K. D. Schmitt, M. E. Leonowicz, J. D. Lutner, E. W. Sheppard in Advanced Catalysis and Nanostructured Materials: Modern Synthesis Methods (Ed: W. R. Moser), Academic Press, New York, 1996, pp.1-19.
    29.趙承琛, ”界面科學基礎”, 第八章, 復文書局(民國74 年)
    30.Drew Myers, Surfactant Science and Technology, second Edition, 1992, pp.92
    31.J. N. Israelachvili, S. Marcelja and R. G. Horn, Q., Rev. Biophys, 1980, 13, 121.
    32.D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans.Ⅱ., 1981, 77, 1264.
    33.C.Tanford, The Hydrophobic Effect, Formation of Micelles and Biologic Menbranes , 1980.
    34.D. F. Evans and H. Wennerstrom, The Colloidal Domain, VHC , 1994.
    35.Ying, J. Y. ; Mehnex, C. P. ; Wong, M. S. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angew. Chem. Int. Ed, 1999, 38, 56-57.
    36.J.S. Beck, J. C. vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olsen, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834-10843.
    37.C.-Y. Chen, S. L. Burkett, H.-X. Li, M. E. Davis, Microporous Mater., 1993, 2, 27-34.
    38.A. Steel, S. W. Carr, M. W. Anderson, Chem. Commun., 1994, 1571-1572.
    39.A. Monnier, F. Schuth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B. F. Chmelka, Science, 1993, 261, 1299-1303.
    40.a) T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn. 1990, 63, 988-992. b) S. Inagaki, Y. Fukushima, K. Kuroda, Chem. Commun., 1993, 680-682. c) Y. Fukushima, S. Inagaki, Mater. Sci. Eng. A, 1996, 217-218, 116-118.
    41.Firouzi, A. Kumar, D.; Bull, L. M.; Besier, T.;Sieger, P.; Huo, Q.; Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Sicol, J.; Margolese, D.; Stucky, G. D.; Chmelka, B. F. Science, 1995, 267, 1138.
    42.a) Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, G. D. Stucky, Nature, 1994, 368, 317-321; b) Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schlenker, D. H. Olsen, E. W. Sheppard, Chem. Mater., 1994, 6, 2317-2326.
    43.王奕凱, 邱宗明, 李秉傑合譯, 非均勻系催化原理及應用, 國立編譯館, 渤海堂文化公司, 台北, 1993.
    44.J. Cavanagh, A. G. Palmer, W. Fairbrother, N. Skelton, Protein NMR spectroscopy: Principle and practice, Academic Press, San Diego, 1996.
    45.Ernst, R.R.; Bodenhausen, G.; Wokann, A. in Principle of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon :Oxford, 1987.
    46.Blum, K. in Density Matrix Theory and Applications, Plenum: New York, 1981.
    47.Brink, D.M.; Satchler, G.R. in Angular Momentum, University Press: Oxford, 1962.
    48.Bloembergen, N.; Purcell, E. M.; Pound, R. V., Phys. Rev. 1948, 73, 679.
    49.Rose, M. E. in Elementary Theory of Angular Momentum, Wiley: New York, 1957.
    50.Jacobs, W. P. J. H.; de Haan, J. W.; van de Ven, L. J. M.; van Santen
    51.Fischer, L.; Harle V.; Kasztelan, S.; d’Espinose de la Caillerie, J. B., Solid State Nucl. Magn. Reson. 2000, 16, 85.
    52.Chao, K. J.; Sheu, S. P.; Lin, L. H.; Genet, M. J.; Feng, M. H., Zeolites, 1997, 18, 18.
    53.Darrt, C. B.; Davis, M. E.; Catal. Today, 1994, 19, 151.
    54.Spectromeyric Identification of Organic Compounds, Sixth edition, Rober, M. Silverstein; Francis, X. Webster.
    55.C. P. Grey, A. J. Vega, J. Am. Chem. Soc. 1995, 117, 8232.
    56.A. J. Vega, in Encyclopedia of NMR (Eds.: D. M. Grant, R. K. Harris), Wiley, 1995.
    57.Beck, J. S., U.S. Patent 5,057, 296, 1991.
    58.Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C., U.S. Patent 5,098, 684, 1992.
    59.Beck, J. S.; Kresge, C. T.; McCullen, S. B.; Roth, W. J.; Vartuli, J. C. U.S. Patent 5304363, 1994.
    60.Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature , 1992, 359, 710.
    61.Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc., 1992, 114, 10834.
    62.Chen, C. Y.; Li, H. X.; Davis, M. E. Microporous Mater. 1993, 2, 17
    63.Corma, A.; Forne´s, V.; Navarro, M. T.; Pe´rez-Pariente, J., J. Catal., 1994, 148, 569.
    64.Janicke, M.; Kumar, D.; Stucky, G. D.; Chmelka, B. F., Stud. Surf. Sci. Catal. , 1994, 84, 243.
    65.Schmidt, R.; Akporiaye, D.; Sto¨cker, M.; Ellestad, O. H., Chem. Commun., 1994, 1493.
    66.Schmidt, R.; Akporiaye, D.; Sto¨cker, M.; Ellestad, O. H. Stud. Surf. Sci. Catal. , 1994, 84, 61
    67.Borade, R. B.; Clearfield, A., Catal. Lett., 1995, 31, 267.
    68.Luan, Z.; Cheng, C. F.; Zhou, W.; Klinowski, J., J. Phys. Chem., 1995, 99, 1018.
    69.Kloetstra, K. R.; Zandbergen, H. W.; van Bekkum, H., Catal. Lett., 1995, 33, 157
    70.Alfredsson, V.; Keung, M.; Monnier, A.; Stucky, G. D.; Unger, K. K.; Schu¨ th, F., Chem. Commun., 1994, 921.
    71.Coustel, M.; Di Renzo, F.; Fajula, F., J. Chem. Soc., Chem. Commun., 1994, 967.
    72.(a) Fu, G.; Fyfe, C. A.; Schwieger, W.; Kokotailo, G. ,Angew. Chem., Int. Ed. Engl., 1995, 34, 1499.
    73.Fyfe, C. A.; Fu, G., J. Am. Chem. Soc., 1995, 117, 9709.
    74.Danumah, C. M.Sc. Thesis, Universite´ Laval, 1995.
    75.Dongyuan Zhao,Jianglin Feng, Qisheng Huo, Nicholas Melosh, Glenn H. Fredrickson, Bradley F. Chmelka, Galen D. Stucky, Science, 1998 , 279, 548-552.
    76.Yinghong Yue, Antoine Gedeon, Jean-Luc Bonardet, Nick Melosh, Jean-Baptiste D’Espinose and Jacques Fraissard, Chem. Commun., 1999, 1967-1968.
    77.R.Ryoo, J. M. Kim, C. H. Ko and D. H. Shin, J. Phys. Chem, 1996, 100, 17718.
    78.L. Y. Chen, S. Jaenikle and G. K. Chuah, Microporous Mater, 1997, 12, 323.
    79.R. Mokaya, J. Phys. Chem., 2000, 104, 8279.
    80.Sadanobu Sumiya, Yasunori Oumi, Toshiya Uozumi, Tsuneji Sano, J. Mater. Chem., 2001, 11, 1111-1115.
    81.Zhaohua Luan, Martin Hartmann, Dongyuan Zhao, Wuzong Zhou, Larry Kevan, Chem. Mater., 1999, 11, 1621-1627.
    82.C. D. Cheng, C. T.-W. Chu, J. N. Miale, R. F. Bridger and R. B. Calvert, R. B., J. Am. Chem. Soc., 1984, 106, 8143.
    83.E. P. Barrett, L. S. Joyner, P. P. Halenda, J. Am. Chem. Soc., 1951, 73, 373.
    84.S. J. Gregg. K. S. W. Sing. Adsorption, Surface Area and Porosity, 2nd Ed., Academic press, New York, NY, 1982.
    85.A. Baiker, International Chem. Eng., 1985, 17, 25.
    86.S. Brunauer, L. S. Deming, W. S. Deming and E. Teller, J. Am. Chem. Soc., 1940, 62, 1723.
    87.Sing, K. S. W.; Everest, D. H; Hual, R. A. W.; Moscou, L. ; Pientti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1995, 57, 603.
    88.Michal Kruk, Mietek Jaroniec, Chem. Mater., 2001, 13, 3169~3183.
    89.S. C. Shen, S. Kaw., Langmuir, 2002, 18, 4720~4728.
    90.J. W. Word, J. Catal., 1967, 9, 225; 1968, 11, 251, 259.
    91.C. P. Grey and A. Vega, J. Am. Chem. Soc., 1995, 117, 8232.

    QR CODE
    :::