| 研究生: |
蔡林融 Rong Tsai-Lin |
|---|---|
| 論文名稱: |
飛鼠號立方衛星電力次系統設計 |
| 指導教授: |
張起維
Loren Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 立方衛星 、電力次系統 、飛鼠號 |
| 外文關鍵詞: | INSPIRESat-2 |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
立方衛星(CubeSat)原本為一種為了系統工程教育所設計的小型衛星規格。由於其成本較低以及尺寸很小,除了非常適合用在教育用途的衛星任務上,近年也成為太空科學任務的觀測平台。立方衛星的本體通常由任務酬載(Mission Payload)、指令與資料處理次系統(Command & Data Handling, C&DH)、電力次系統(Electrical Power Subsystem, EPS)、姿態控制次系統(Attitude Determination & Control Subsystem, ADCS)以及通訊次系統(Communications Subsystem, COMM)等次系統所組成。其中的電力次系統主要負責電力的生產、儲存以及電力管理。由於立方衛星的尺寸很小;能夠搭載的太陽能電池有限;如何有效的最大化可用的電力是立方衛星電力次系統的主要挑戰。
IDEASSat / INSPIRESat-2 / 飛鼠號為學生團隊為主的國際合作計畫進行開發的立方衛星任務。除了任務的科學目的之外,同時也具有進行學生在系統工程與任務設計等實務經驗上的訓練與教育目的。本論文討論針對IDEASSat / INSPIRESat-2 / 飛鼠號立方衛星所設計的電力次系統的設計以及各種分析與考量。並且總結設計過程中的經驗以供後進學習。
A CubeSat is a very small satellite standard originally developed for education, but now widely used for science missions, due the low cost and very small size. Like larger satellites, a CubeSat usually consists of many subsystems including the Mission Payload, Command & Data Handling (C&DH), Electrical Power Subsystem (EPS), Attitude Determination & Control Subsystem (ADCS) and Communication Subsystem (COMM). Among these, the main purpose of the EPS is to generate, store and manage the distribution of electrical power, which usually comes from a solar photovoltaic system. Due to the limited space for solar cells, the main challenge for a CubeSat EPS is to improve the efficiency of power conversion and transmission.
The IDEASSat / INSPIRESat-2 / 飛鼠號 CubeSat mission is an international collaborative project consisting mainly of student team members. The mission goal of IDEASSat is not only the for ionospheric science but also for education purposes to allow the student members to learn and experience systems engineering and real spacecraft design. This paper discusses the EPS design, analysis, and considerations of the IDEASSat / INSPIRESat-2 / 飛鼠號 CubeSat mission. We conclude with the experiences learned from the project for future projects.
[1] The CubeSat Program, Cal Poly SLO, CubeSat Design Specification Rev. 13, San Luis Obispo, Cal Poly, 2014.
[2] National Academies of Sciences, Engineering, and Medicine, Achieving Science with CubeSats: Thinking Inside the Box, The National Academies Press, Washington, D.C., 2016.
[3] W. Ley, K. Wittmann, W. Hallmann, Handbook of Space Technology, American Institute of Aeronautics and Astronautics, Inc., Reston, 2008.
[4] Baker, D.N. & A. Chandran, “Space, still the final frontier,” Science, Vol.361, p. 207, July 2018.
[5] L. C. Chang, et al., “IDEASSat: The Ionosphere Dynamics Explorer and Attitude Subsystem Satellite,” Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, July 2018.
[6] Z. W. Lin, et al., “Advanced Ionospheric Probe scientific mission onboard FORMOSAT-5 satellite,” Terr. Atmos. Ocean. Sci., Vol.28, pp. 99-110, April 2017.
[7] J. P. Mason et al., “MinXSS-1 CubeSat On-Orbit Pointing and Power Performance: The First Flight of the Blue Canyon Technologies XACT 3-axis Attitude Determination and Control System,” Journal of Small Satellite, Vol. 6, No. 3, pp. 651-662, June 2017.
[8] Clyde Space Ltd, Products - Spacecraft Engineering - Clyde Space, Accessed on 29 May 2019 at https://www.clyde.space/products/35-cput-sband-cubesat-transmitter.
[9] R. D. Lazar, et al., Optimized Design of Power Supply for CubeSat at Aalborg University, Institute of Energy Technology of Aalborg University, Aalborg, April 2001.
[10] H. Bounechba, et al., “Comparison of perturb & observe and fuzzy logic in maximum power point tracker for PV systems,” Energy Proc., Vol. 50, pp. 677-684, July 2014.
[11] J. Nelson, The Physics of Solar Cells, World Scientific Publishing Company, London, May 2003.
[12] K. H. Hussein, et al., “Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,” IEEE Proceedings - Gener.Transm.Distrib., Vol.142, No.1, pp. 59-64, January 1995.
[13] C.R. Sullivan, M.J. Powers, “A high-efficiency maximum power point tracker for photovoltaic arrays in a solar-powered race vehicle,” Proceedings of IEEE Power Electronics Specialist Conference, pp. 574-580, Seattle, WA, USA, June 1993.
[14] M. S. Ngan & C. W. Tan, “A study of maximum power point tracking algorithms for stand-alone Photovoltaic Systems,” 2011 IEEE Applied Power Electronics Colloquium, pp. 22-27, Johor Bahru, Malaysia, April 2011.
[15] D. Hohm & M. Ropp, “Comparative Study of Maximum Power Point Tracking Algorithms,” Progress in Photovoltaics: Research and Applications, Vol. 11, no. 1, pp. 47 - 62, November 2002.
[16] N. Mohan, T. M. Undeland, W. P. Robbins, Powers Electronics - Converters, Applications, and Design, 2nd Edition, John Wiley & Sons Inc., New York, 1995.
[17] J. P. Mason et al., “Miniature X-Ray Solar Spectrometer (MinXSS) A Science-Oriented, University 3U CubeSat,” Journal of Spacecraft and Rockets, Vol. 53, Issue 2, pp. 328-339; March 2016.
[18] AZUR SPACE Solar Power GmbH, - SPACE Assemblies - AZUR SPACE Solar Power GmbH, Accessed on 29 May 2019 at http://www.azurspace.com/index.php/en/-products/products-space/space-assemblies.
[19] AZUR SPACE Solar Power GmbH, TJ Solar Cell Assembly 3G30A Datasheet, tech. rep., Heilbronn, 2016.
[20] A. G. Inc., STK - Eclipse Times, Accessed on 29 May 2019 at http://help.agi.com/stk/-index.htm#../Subsystems/dataProviders/Content/html/dataProviders/Eclipse_Times~Vehicle.htm.
[21] A. G. Inc., What we offer? | AGI, Accessed on 29 May 2019 at http://www.agi.com/-products.
[22] SANYO Electric Co., Ltd. - Panasonic, NCR18650B-H00BA Datasheet, tech. rep., Osaka, 2012.
[23] IndiaMART InterMESH Ltd., Panasonic NCR18650B High Discharge Li-ion Cell, Accessed on 29 May 2019 at https://www.indiamart.com/proddetail/panasonic-ncr18650b-high-discharge-li-ion-cell-18616922130.html.
[24] NASA Official, 03. Power - State of the Art of Small Spacecraft Teschnology, Accessed on 31 May 2019 at https://sst-soa.arc.nasa.gov/03-power.
[25] Linear Technology Co., LT3652 Datasheet, tech. rep., Norwood, 2015.
[26] ROHM Co., 電源設計資訊網站Tech Web, Accessed on 10 April 2019 at https://micro.rohm.com/tw/techweb/.
[27] Texas Instruments, TPS6213X series Datasheet, tech. rep., Texas, 2016.
[28] Texas Instruments, TPS61089x series Datasheet, tech, rep., Texas, 2016.
[29] OMRON. Co., G3VM-XXHR MOS FET Relays Datasheet, tech, rep., Kyoto, 2019.
[30] Samtec, Inc., ESQ-126-13-G-D .100" PC/104™ Elevated Socket Strip, Accessed on 29 May 2019 at https://www.samtec.com/products/esq-126-13-g-d#models.
[31] Molex, LLC., Molec Connector Part Number - 52207-0833, Accessed on 29 May 2019 at https://www.molex.com/molex/products/datasheet.jsp;jsessionid=9PL45sVEdk218gYzVTLKskMiYhbBEtyCLBuQJFAq.molex0?part=active/0522070833_FFC_FPC_CONNECTORS.xml.
[32] Texas Instruments, INA3221 Datasheet, tech, rep., Texas, 2016.
[33] Vishay Intertechnology, Inc., WSLP-series Resistors Datasheet, tech, rep., Pennsylvania, 2018.
[34] Analog Devices, Inc., AD7997/AD7998 Dataseet,tech, rep., Norwood, 2009.
[35] Maxim Integrated Products, Inc., MAX17048/MAX17049 Datasheet, tech, rep., California, 2016.
[36] Texas Instruments, BQ28Z610 Datasheet, tech, rep., Texas, 2017.
[37] KiCad Developers Team, KiCad EDA, Acessed on 31 May 2019 at http://www.kicad-pcb.org/.
[38] Mentor Graphics, PADS PCB Design Software, Accessed on 31 May 2019 at https://www.pads.com/.
[39] Für Nutzer aus Deutschland et al., Blocked I2C Bus, Accessed on 29 May 2019 at https://www.i2c-bus.org/i2c-primer/analysing-obscure-problems/blocked-bus/.