| 研究生: |
陳志寧 Chih-Ning Chen |
|---|---|
| 論文名稱: |
具有適應性終端電阻及預先增強器之8Gbps串列連結傳送器 8Gbps Serial Link Transmitter with Adaptive Termination Resistors and Pre-Emphasis |
| 指導教授: |
周世傑
Shyh-Jye Jou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 預先增強傳送器 、平行化打散器 、終端電阻 |
| 外文關鍵詞: | Transmitter with Pre-emphsis, Termination Resistors, Parallel Scrambler |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於多媒體應用的增加,使得傳輸資料頻寬的需要量增大。如果把高速串列連結傳輸應用在價格低廉的纜線上,將是非常節省成本的方法。本論文中,我們實現所提出之平行化打散器(Parallel Scrambler),以及完成高速串列連結之資料傳送器並且建構適應性終端電阻與信號預先增強器電路於其中,來實際應用在高速傳輸上。並且提出一平行化打散器之設計法則與架構,把串列化打散器轉換成任意之平行輸出以解決在速度上的限制,達到速度上之要求。而在電路設計上,提出一新型具互斥或運算(Exclusive OR)之正負緣觸發暫存器使得打散器可以操作在更高的工作頻率。經由量測,證明使用TSMC 0.18um 1P6M CMOS製程製作之平行化打散器,可以工作在40Gbps的速度。
接著說明此高速串列連結之資料傳送器架構。提出一適應性終端電阻與架構,可以針對不同纜線的特性阻抗自動地調整成和它一樣,讓輸出端對傳輸電纜75Ω~45Ω的特性阻抗值做到匹配的效果,使訊號不會因阻抗不匹配產生反射。此外,改進了調整預先增強器電流的架構,讓預先增強器可以操作的更容易。此完整的高速串列連結之資料傳送器可以應用在長度為1公尺至15公尺的纜線上,在5公尺纜線下傳輸速率可達8Gbps,整個電路以TSMC 0.18um 1P6M CMOS製程予以實現。
Due to the increasing requirement of multimedia applications, the demand for data transmission bandwidth is increased. It is very efficient to make the use of low cost coaxial cable for high-speed link transmitting.In this thesis, we will implement a parallel scrambler and a high-speed serial link transmitter with adaptive termination resistors and pre-emphasis. A very systematic parallel scrambler design methodology and architecture is proposed to overcome the limitation of serial scrambler. A new XOR-DET-C2MOS cell is proposed to speed up the operation speed of the parallel scrambler. Measurement results show that 40Gbps parallel scrambler with 16 outputs can be achieved by using 0.18um CMOS process.
We also propose a digital approach of adaptive termination resistors and architecture in the transmitter. It can match the characteristic impedance of coaxial cable automatically from 75Ω~45Ω to reduce the reflection caused by the mismatch of impedance. Moreover, the architecture of pre-emphasis is improved to make the method of tuning pre-emphasis current more easy. The transmitter with pre-emphasis can handle coaxial cable length from 1-meter to 15-meter. The performance of transmitting data at 8Gbps over the 5-meter coaxial cable is achieved. The overall circuit is implemented in TSMC 0.18um 1P6M process.
[1] Universal Serial Bus specification revision 2.0, Mar. 2000.
[2] RAMBus specification Version 1.11, July 2000.
[3] IEEE Std 803.2: IEEE standard for 1000Mbps Ethernet.
[4] IEEE Std 1394b-2000: IEEE standard for a high perf.
[5] PCI Express Specification Revision 1.0 July 22, 2002
[6] IEEE Std. 802.3ae: IEEE standard for 10Gbps Ethernet.
[7] R. C. Dixson, "Spread Spectrum Systems," 2nd ed., John Wiley and Sons, New York, 1984.
[8] M. L. Bushnell, V. D. Agrawal, "Essentials of Electronic Testing for Digital, Memory & Mixed-Signal VLSI Circuits," Kluwer Academic Pubishers, 2000.
[9] D. W. Choi, “Parallel Scrambling Techniques for Digital Multiplexers,” AT&T Tech. Jour. Vol.65, pp.123-136, Sept./Oct., 1986.
[10] W. J. McFarland, K. H. Springer, C. S. Yen, “1-Gword/s Pseudorandom Woed Generator,” IEEE J. Solid-State Circuits, vol.24, No.3, pp.747-751, June 1989.
[11] S. W. Seetharam, G. J. Minden, J. B. Evans, “A Parallel SONET Scrambler/Descrambler Architecture,” IEEE ISCAS, vol.3, pp.2011-2014, May 1993.
[12] B. G. Lee, S. C. Kim, “Low-Rate Parallel Scrambling Techniques for Today’s Lightwave Transmission,” IEEE Communications Magazine, pp.84-95, April 1995.
[13] S. C. Kim, B. G. Lee, “Realizations of Parallel and Multibit-Parallel Shift Register Generators,” IEEE Trans. Commun., vol.45, pp.1053-1060, Sept. 1997.
[14] S. M. Mishra, S. S. Rofail, K. S. Yeo, “Design of high performance double edge-triggered Flip-Flops,” Devices and Systems, IEE Proceedings, vol.147, pp.283–290, Oct. 2000.
[15] 謝宗賢、徐榮富,“線性回授位移暫存器”,中華民國專利,專利公告號:00437216, 卷號:28,期號:15,公告日期90年5月28日。
[16] C. H. Lin, C. H. Tsai, C. N. Chen, S. J. Jou, “4/2 PAM Serial link Transmitter with Tunable Pre-Emphasis,” IEEE ISCAS, pp.952-955, May 2004.
[17] Y. P. Fan, J. E. Smith, “On-die termination resistors with analog impedance control for standard CMOS technology,” IEEE J. Solid-State Circuits, vol.38, pp.361–364, Feb. 2003.
[18] B. Nauta, M. B. Dijkstra, “Analog line driver with adaptive impedance matching,” IEEE J. Solid-State Circuits, vol.33, pp.1992-1998, Dec. 1998.
[19] T. J. Gabara, S. C. Knauer, ” Digitally adjustable resistors in CMOS for high-performance applications,” IEEE J. Solid-State Circuits, vol.27, pp.1176-1185, Aug. 1992.
[20] H. Conrad, “2.4 Gbit/s CML I/Os with integrated line termination resistors realized in 0.5 μm BiCMOS technology,” Bipolar/BiCMOS Circuits and Technology Meeting, IEE Proceedings, pp.120-122, Sept. 1997.
[21] C. H. Lin, C. H. Wang, S. J. Jou, “5Gbps Serial Link Transmitter with Pre-emphasis,” ASP-DAC, pp.795-802, 2003.
[22] F. R. Ramin, et al., “A 0.4-mm CMOS 10-Gb/s 4-PAM Pre-Emphasis Serial Link Transmitter,” IEEE J. Solid-State Circuits, vol.37, pp.580-585, May 1999.