| 研究生: |
馬英莎 Inggit Kresna Maharsih |
|---|---|
| 論文名稱: |
氣泡於傾斜超疏水表面之運動行為 Sliding Motion of Liquid Drops on an Inclined Hysteresis-free Surface: Remobilizing Surfactant |
| 指導教授: |
曹恆光
Dr. Heng-Kwong Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | Remobilizing surfactant 、注油表面 、接觸角遲滯 、滑动速度 |
| 外文關鍵詞: | Remobilizing surfactant, Oil-infused surface, Contact angle hysteresis, Sliding velocity |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米液滴在極低接觸角遲滯表面上的移動行為已被廣泛地觀測與研究,並利用其優勢發展出微流道系統和其他科技應用。然而,並非所有的極低接觸角表面都可以用於界面活性劑溶液中,因此本論文著重於不同濃度之界面活性劑溶液對於自製低遲滯油填充表面的影響。
將多孔性PTFE止瀉帶拉伸並包覆於載玻片上,再塗布上潤滑油,即可製作出油填充的低遲滯表面。並利用inflation-deflation method和斜板法來驗證此表面具低遲滯的特性。因為它具有此特殊性質,我們選用三種不同的界面活性劑:SDS、DTAB和Triton X-100溶液,計算此三種溶液的液滴在油填充表面上的滑移速度。另外,我們也將油填充表面置放於三種不同的界面活性劑中,計算氣泡在表面下之滑移速度。結果可以發現:不管是液滴還是氣泡,隨著界面活性劑濃度的提高,滑移速度都會降低,原因是液滴在滑移的過程中會改變形狀;氣泡則是除了形狀改變、前投影面積變大的因素外,還會受到Marangoni stress的影響。然而,當界面活性劑超過臨界微胞濃度後,液滴與氣泡的滑移速都有所提升,稱之為remobilizing surfactant。
在本論文的後段,也探討了含氟之界面活性劑與油填充低遲滯表面的交互作用,因為這兩者之間多了化學親和力,造成在表面上呈現一系列動態接觸角的變化。
The motions of nanodrops on the hysteresis-free surfaces are widely observed to explore the advantages applied in microfluidic systems and technologies. Since not all hysteresis-free surfaces are resistance upon surfactant solution, in this work, the effect of various concentrations of surfactants upon an oil-infused surface has been studied.
An oil-infused surface is fabricated by stretching porous PTFE tape on glass slide and coated it with fluorinated lubricant. The characteristics of hysteresis-free surface are examined on it, by using inflation-deflation method and tilted plane method. Since it shows hysteresis-free behavior, drops containing each three types of surfactants, SDS, DTAB, and Triton X-100, are deposited on it and the sliding motion is calculated. The bubbles motion is also determined under an oil-infused surface in surfactant solutions. It is shown that in aqueous solution, the sliding velocity of both drops and bubbles are retarded, due to shape deformation for drops, while for bubbles associated with large frontal area and effect of Marangoni stress. However, the sliding velocity of drops and bubbles rising after the concentration reaches CMC. This phenomenon corresponds to remobilizing surfactant, which is making the surface concentration becomes uniform.
And the last is investigation of fluorinated surfactant interaction with an-oil-infused surface. The two components have chemical affinity interaction, since the drop containing surfactant has dynamic contact angle on it.
[1] Whitesides, G. M. The Origins and The Future of Microfluidics. Nature. 20016, 442, 368-373.
[2] Nguyen, T. P. N.; Brunet, P.; Coffinier, Y.; Boukherroub, R. Quantitative Testing of Robustness on Superomniphobic Surfaces by Drop Impact. Langmuir. 2010, 26, 18369–18373.
[3] Chang, C. C.; Wu, C. J.; Sheng, Y. J.; Tsao, H. K. Anti-smudge Behavior of Facilely Fabricated Liquid-infused Surfaces with Extremely Low Contact Angle Hysteresis Property. RSC. Adv.2016, 6, 19214-19222.
[4] Myers, D. Surfaces, Interfaces, and Colloids Principles and Applications. VCH Publishers: Cordoba, 1992.
[5] Berthier, J.; Brakke, K. A. The Physics of Microdroplets. Scrivener Publishing: USA, 2012
[6] Berg, J. C. An Introduction to Interfaces & Colloids The Bridge to Nanoscience. World Scientific: USA, 2009.
[7] Xin, B.; Hao, J. Reversibly Switchable Wettability. Chem. Soc. Rev. 2010, 39, 769-782.
[8] Chu, Z.; Seeger, S. Superamphiphobic Surfaces. Chem. Soc. Rev. 2014, 43, 2784-2798.
[9] Wenzel, R. N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988-994.
[10] Cassie, A. B. D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546-551.
[11] Chang, C. C.; Wu, C.J.; Sheng, Y. J.; Tsao, H. K. Air Pocket Stability and the Imbibition Pathway in Droplet Wetting. Soft Matter. 2015, 11, 7308-7315.
[12] Young, T. An Essay on the Cohesion of Fluids. Philos. Trans. R. Soc. London. 1805, 95, 65-87.
[13] Israelachvili, J. N. Intermolecular and Surface Forces. Academic Press: New York, 1985.
[14] Hong, S. J.; Chang, F. M.; Chou, T. H.; Chan, S. H.; Sheng, Y. J.; Tsao, H. K. Anomalous Contact Angle Hysteresis of a Captive Bubble: Advancing Contact Line Pinning. Langmuir, 2011, 27 (11), 6890–6896.
[15] de Gennes, P. G.; Brochard-Wyart, F.; Quere, D. Capillarity and Wetting Phenomena, Drops, Bubbles, Pears, Waves; Springer: New York, 2004.
[16] Joanny, J. F.; de Gennes,P. G. A Model for Contact Angle Hysteresis. J. Chem. Phys. 1984, 81, 552-562.
[17] Wei, Z.; He, M. F.; Zhao, Y. P. The Effects of Roughness on Adhesion Hysteresis. J. Adhes. Sci. Technol. 2010, 24, 1045-1054.
[18] Karsa, D. R. (2006). What Are Surfactants? In R. J. Farn (Ed.), Chemistry and Technology of Surfatants (pp.1-21). Oxford, England: Blackwell Publishing.
[19] El-Hefian, E. A.; Yahaya, A. H. Investigation on Some Properties of SDS Solutions. Aust. J. Basic & Appl. Sci. 2011, 5(7), 1221-1227.
[20] McGrath, K. M. Phase Behavior of Dodecyltrimethylammonium Bromide/Water Mixtures. Langmuir. 1995, 11, 1835-1839.
[21] Borbely, S. Aggregate Structure in Aqueous Solutions of Brij-35 Nonionic Surfactant Studied by Small-angle Neutron Scattering. Langmuir. 2000, 16, 5540-5545.
[22] Kovalchuk, N. M.; Trybala, A.; Starov, V.; Matar, O.; Ivanova, N. Fluoro- vs Hydrocarbon Surfactants: Why Do They Differ in Wetting Performance. Adv. Colloid Interface Sci. 2014, 210, 65-71.
[23] Myers, D. Surfactant Sciences and Technology, Second Edition.VCH Publishers: Cordoba, 1992.
[24] Merck Products. (2017). Retrieved May 1, 2017, from http://www.sigmaaldrich.com/catalog/product/aldrich/858366?lang=de®ion=DE.
[25] Ghosh, S.; Moulik, S. P. Interfacial and Micellization Behaviors of Binary and Ternary Mixtures of Amphiphiles (Twee-20, Brij-35, and Sodium Dedecyl Sulfate) in Aqueous Medium. . J. Colloid Interface Sci. 1998, 208, 357-366.
[26] Bohn, H. F.; Federle, W. Insect Aquaplaning: Nepenthes Pitcher Plants Capture Prey with the Peristome, a Fully wettable Water-lubricated Anisotropic Surface. Proc. Natl Acad. Sci. 2004, 101, 14138–14143.
[27] Vogel, N. Belisle, R. A.; Hatton, B.; Wong, T. K.; Aizenberg, J. Transparency and Damage Tolerance of Patternable Omniphobic Surfaces Based on Inverse Colloidal Monolayers. Nature. 2013, 4:2167, 1-10.
[28] Wong, T. S.; Kang, S. H.; Tang, S. K. Y.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J. Bioinspired Self-repairing Slippery Surfaces with Pressure-stable Omniphobicity. Nature. 2009, 477, 443-447.
[29] Extrand, C. W.; Kumagai, Y. Liquid Drops on an Inclined Plane: The Relation between Contact Angles, Drop Shape, and Retentive Force. J. Colloid Interface Sci.1995, 170, 515-521.
[30] Quere, D.; Azzopardi, M. J.; Delattre, L. Drops at Rest on a Tilted Plane. Langmuir. 1998, 14, 2213-2216.
[31] Kim, H. Y.; Lee, H. J.; Kang, B. H. Sliding of Liquid Drops Down an Inclined Solid Surface. J. Colloid Interface Sci. 2002, 247, 372-380.
[32] Perron, A.; Kiss, L. I.; Poncsak, S. An Experimental Investigation of the Motion of Single Bubbles under a Slightly Inclined Surface. Int. J. Multiphase Flow. 2006, 32, 606-622.
[33] Chen, L. H.; Lee, Y. L. Adsorption Behavior of Surfactants and Mass Transfer in Single-Drop Extraction. AlChE J. 2000, 46 (1), 160-168.
[34] Huang, W. S.; Kintner, R. C. Effects of Surfactants on Mass Transfer Inside Drops. AIChE J., 1969, 15, 735-744.
[35] Sadhal, S. S.; Johnson, R. E. Stokes Flow Past Bubbles and Drops Partially Coated with Thin Films. J. Fluid Mech., 1983, 126, 237-250.
[36] Cavanagh, D. P.; Eckmann, D. M. The Effects of a Soluble Surfactant on the Interfacial Dynamics of Stationary Bubbles in Inclined Tubes. J. Fluid Mech. 2002, 469, 369-400.
[37] Frese, Ch.; Ruppert, S.; Sugar, M.; Schmidth-Lewerkuhne, H.; Wittern, K. P.; Fainerman, V. B.; Eggers, R.; Miller, R. Adsorption Kinetics of Surfactant Mixtures from Micellar Solutions as Studied by Maximum Bubble Pressure Technique. J. Colloid Interface Sci. 2003, 267, 475-482.
[38] 3M Advanced Materials Division. (2016). 3M Advanced Materials Division 3M Fluorosurfactant FC-4432 ™. Retrieved January 12, 2017, from http://multimedia.3m.com/mws/media/624422O/3mtm-novectm-fluorosurfactant-fc-4432-prod-info.pdf
[39] Li, M.; Rharbi, Y.; Huang, X. Y.; Winnik, M. A. Small Variations in the Composition and Properties of Triton X-100. J. Colloid Interface Sci. 2000, 230, 135-139.
[40] Chang, C. C.; Wu, C. J.; Sheng, Y. J.; Tsao, H. K. Resisting and Pinning of a Nanodrop by Trenches on a Hysteresis-free Surface. J. Phys. Chem. 2016, 145, 164702.
[41] Chang, F. M.; Hong, S. J.; Sheng, Y. J.; Tsao, H. K. Wetting Invasion and Retreat across a Corner Boundary. J. Phys. Chem. C. 2010, 114, 1615-1621.
[42] Chen, X.; Ma, R.; Zhou, H.; Zhou, X.; Che, L.; Yao, S.; Wang, Z. Activating the Microscale Edge Effect in a Hierarchical Surface for Frosting Suppression and Defrosting Promotion. Sci. Rep. 2013, 3, 02515
[43] Liang, Y. E.; Weng, Y. H.; Hsieh, I. F.; Tsao, H. K.; Sheng, Y. J. Attractive Encounter of a Nanodrop toward a Nanoprotrusion. J. Phys. Chem. C. 2017, 121 (14), 7923–7930.
[44] Stebe, K. J.; Lin, S. Y.; Maldarelli, C. Remobilizing Surfactant Retarded Fluid Particle Interfaces. I. Stress-free Conditions at the Interfaces of Micellar Solutions of Surfactants with Fast Sorption Kinetics. Phys. Fluids A. 1991, 3, 3-20
[45] Stebe, K. J.; Maldarelli, C. Remobilizing Surfactant Retarded Fluid Particle Interfaces. II. Controlling The Surface Mobility at Interfaces of Solutions Containing Surface Active Components. J. Colloid Interface Sci. 1994, 163, 177-189.
[46] Chang, C. C.; Wu, C. J.; Sheng, Y. J.; Tsao, H. K. Extraordinary Rapid Rise of Tiny Bubbles Sliding beneath Superhydrophobic Surfaces. Langmuir. 2017, 33 (5), 1326-1331.
[47] Wang, Y. P.; Papageorgiou, D. T.; Maldarelli, C. Increased Mobility of a Surfactant-retarded Bubble at High Bulk Concentrations. J. Fluid Mech. 1999, 390, 251-270.
[48] Chen, J. N.; Stebe, K. J. Surfactant-induced Retardation of the Thermocapillary Migration of a Droplet. J. Fluid Mech. 1997, 340, 35-59.