跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許傅凱
Fu-Kai Shu
論文名稱: 機械合金法合成含鋁之Mg2Ni儲氫合金的結構與特性研究
指導教授: 李勝隆
Sheng-long Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 84
外文關鍵詞: amorphous, mechanical alloying, Mg2Ni
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於探討製程方式與添加鋁粉對IECP法所製備的Mg2Ni合金之結構、表面型態與吸放氫特性的影響。分別將Mg2Ni與Mg2Ni 混合鋁粉配製為
    (Mg2Ni)0.9Al0.1粉體,藉由機械合金法球磨後,以X光繞射分析(XRD)、掃描式電子顯微鏡(SEM)、微分掃描熱分析儀(DSC)觀察結構、表面型態與熱行為之變化,並進行吸放氫測試(PCI),以暸解Mg2Ni與(Mg2Ni)0.9Al0.1粉體於球磨15小時後的粉體結構與表面型態,對於吸放氫的影響。
    結果顯示Mg2Ni與(Mg2Ni)0.9Al0.1粉體經機械合金法球磨,隨著球磨時間增加,晶粒尺寸逐漸細化導致繞射峰有寬化與強度弱化的現象,當球磨至15小時,Mg2Ni與(Mg2Ni)0.9Al0.1粉體的內部結構已趨於非晶質化,此時(Mg2Ni)0.9Al0.1粉體有合金化現象,產生另ㄧ繞射峰Al3Ni。球磨15小時後,由於粉體表面積增加致使表面張力隨之增加,而有抗機械力粉碎效果產生團聚現象。IECP法所製備的Mg2Ni經球磨15小時後,於溫度300℃與壓力40atm條件下,活化1小時吸氫量即可達3.0wt.%。球磨15小時的(Mg2Ni)0.9Al0.1粉體,於溫度200℃吸放氫曲線中可觀察放氫平台壓,其壓力與放氫量分別為0.16atm與0.6wt.%。


    This research purpose lies in the influence of manufacturing process and aluminum addition on the structure, appearance and hydriding characteristic of Mg2Ni prepared by IECP. The structure, appearance and hydriding characteristic of Mg2Ni and (Mg2Ni)0.9Al0.1 by the ball milling for 15 hours have been examined by X-ray diffraction(XRD), scanning electron microscopy(SEM), differential scanning calorimetric(DSC) and pressure concentration isothermal(PCI).
    With the milling time boost, grain refinement of Mg2Ni and (Mg2Ni)0.9Al0.1 results in the phenomenon of broad and weak peak which tends towards amorphous phase then the peak Al3Ni arises from (Mg2Ni)0.9Al0.1 by the ball milling for 15 hours. The agglomeration phenomenon is due to the surface tension increases with fine powder after 15 hours of ball milling. The Mg2Ni prepared by IECP after 15 hours of ball milling activates for an hour to absorb hydrogen 3.0wt.% under 3000C and 40atm. The PCI curve of (Mg2Ni)0.9Al0.1 is by 15 hours of ball milling can be observed dehydriding plateau that pressure is 0.16atm and dehydrogen amount is 0.6wt.% at 2000C.

    總 目 錄 頁數 中文摘要..................................................I 英文摘要.................................................II 謝誌....................................................III 總目錄...................................................IV 圖目錄..................................................VII 表目錄...................................................IX 一、前言..................................................1 二、文獻回顧 2.1 儲氫合金簡介......................................3 2.2 儲氫元素與合金 2.2.1 儲氫元素...................................4 2.2.2 儲氫合金...................................5 2.3 儲氫合金的吸放氫特性 2.3.1 儲氫合金的動力學性質......................14 2.3.2 儲氫合金的熱力學性質......................15 2.3.3 活化......................................17 2.3.4 平台區斜率................................18 2.3.5 遲滯......................................18 2.3.6 熱爆......................................19 2.3.7 氫氣內部雜質氣體對儲氫合金之影響..........19 2.3.8 儲氫合金之循環穩定性......................20 2.4 儲氫合金的應用 2.4.1 儲氫容器..................................21 2.4.2 氫純化....................................22 2.4.3 熱泵......................................23 2.4.4 電動車用電池..............................25 2.4.5 催化劑....................................26 2.5 製備儲氫合金方法 2.5.1 機械合金法原理............................28 2.5.2 機械合金法製備鎂鎳系儲氫合金..............30 三、實驗方法 3.1合金配製、機械合金法與退火處理 3.1.1 合金配製..................................34 3.1.2 機械合金法................................34 3.1.3 退火處理..................................35 3.2粉體結構、表面觀察與熱行為 3.2.1 粉體結構..................................36 3.2.2 粉體表面型態..............................36 3.2.3 粉體熱行為................................37 3.3 儲氫合金特性 3.3.1動力學曲線.................................37 3.3.2 P-C-I曲線.................................38 四、結果與討論 4.1 粉體結構分析、表面型態與熱行為 4.1.1 IECP法所製備的Mg2Ni合金....................39 4.1.2機械合金法球磨IECP法所製備的Mg2Ni合金......40 4.1.3機械合金法球磨配製的(Mg2Ni)0.9Al0.1粉體..... ...45 4.1.4球磨15小時後退火處理之Mg2Ni合金............49 4.2 粉體初始活化速率、吸氫動力與吸放氫曲線 4.2.1機械合金法球磨IECP法所製備的Mg2Ni合金......53 4.2.2機械合金法球磨配製(Mg2Ni)0.9Al0.1粉體....... ...58 4.2.3球磨15小時後退火處理之Mg2Ni合金............62 五、結論.................................................65 六、未來研究方向.........................................66 七、參考文獻.............................................67

    1﹒B.D. Solomon and A. Banerjee, A Global Survey of Hydrogen Energy Research,
    Development and Policy , Energy Policy, Vol.34, pp.781-792, 2006.
    2﹒L.M. Das,“On-Board Hydrogen Storage Systems for Automotive Application”,
    Int. J. Hydrogen Energy, Vol.21, pp.789-800, 1996.
    3﹒經濟部能源局,“金屬儲氫應用技術研討會”, p.4-17, 2005.
    4﹒V. Guther , A. Otto,“Recent Developments in Hydrogen Storage Applications
    Based on Metal Hydrides”, J. Alloys Comp., Vol.293-295, pp.889-892, 1999.
    5﹒H. Suzuki, Y. Osumi, A. Kato, et al.,“Development of A Hydrogen Storage
    System Using Metal Hydrides”, J. Less-Common Met., Vol.89, p.545, 1983.
    6﹒Q.D. Wang, C.P. Chen, Y.Q. Lei,“The Recent Research, Development and
    Industrial Applications of Metal Hydrides in the People’s Republic of
    China”, J. Alloys Comp., Vol.253-254, pp.629-634, 1997.
    7﹒G.L. Lu, L.S. Chen, X.R. Hu, et al.,“The Crystal Structure of New Hydrogen
    Storage Mg3MNi2(M=Al,Ti)alloys”, Acta Metall Sinica, Vol.37, pp.459-62, 2001
    8﹒T. Graham,“On the Relation of Hydrogen to Palladium”, J. Franklin Inst.,
    Vol.87, pp.256-266, 1869.
    9﹒M. Jurczyk, L. Smardz, K. Smardz, et al.,“Nanocrystalline LaNi5-type
    Electrode Materials for Ni-MHx Batteries”, J. Solid State Chem., Vol.171,
    p.30, 2003.
    10﹒J.H.N. Vucht, F.A. Kuijpers, H.C.A.M. Bruning,“Reversible Room-Temperature
    Absorption of Large Quantities of Hydrogen by Intermetallic Compounds”,
    Philips Res. Repts., Vol.25, p.133, 1970.
    11﹒A. Pebler and E.A. Gulbransen,“Equilibrium Studies on the Systems ZrCr2-H2,
    ZrV2-H2 and ZrMo2-H2 Between 0℃ and 900℃”, Trans. Metall. Soc. AIME,
    Vol.239, p.1593, 1967.
    12﹒J.J. Reilly, R.H. Wiswall,“The Reaction of Hydrogen with Alloys of
    Magnesium and Nickel and the Formation of Mg2NiH4”, Inorg. Chem., Vol.7,
    p.2254, 1968.
    13﹒J.J. Reilly, R.H. Wiswall,“Formation and Properties of Iron Titanium
    Hydride”, Inorg. Chem., Vol.13, p.218, 1974.
    14﹒林美姿, “儲氫合金之開發與應用”, 材料與社會, Vol.81, p.61, 1993.
    15﹒廖世傑,“儲氫技術及應用簡介”, 工業材料, Vol.190, p.139, 2002.
    16﹒G.G. Libowitz,“Proceedings of the Symposium on Hydrogen Storage Materials,
    Batteries, and Electrochemistry”, Electrochemical Society, NJ, Vol.92-5,
    p.3, 1991.
    17﹒大角泰章著,“金屬氫化物的性質與應用”,吳永寬,苗艷秋譯. 北京:化學
    工業出版社, pp.19-40, 1990.
    18﹒G. Sandrock,“A Panoramic Overview of Hydrogen Storage Alloys From a Gas
    Reaction Point of View”, J. Alloys Comp., Vol.293-295, p.877, 1999.
    19﹒Q. Li, K.C. Chou, Q. Lin, et al.,“Influence of the Initial Hydrogen
    Pressure on the Hydriding Kinetics of the Mg2-xAlxNi(x=0,0.1) Alloys”,
    Int. J. Hydrogen Energy, Vol.29, pp.1383-1388, 2004.
    20﹒S.S. Penner,“Steps Toward the Hydrogen Economy”, Energy, Vol.31, pp.33-43
    2006.
    21﹒D.M. Kim, K.J. Jang, J.Y. Lee,“A Review on the Development of AB2-Type Zr-
    Based Laves Phase Hydrogen Storage Alloys for Ni-MH Rechargeable Batteries
    In the Korea Advanced Institute of Science and Technology”, J. Alloys
    Comp., Vol.293-295, pp.583-592, 1999.
    22﹒T. Kodama,“Proposal for New Indexes Describing the Degree of Hysteresis
    and Those Applications to the ZrMn2–H2 Systems”, J. Alloys Comp.,
    Vol.278, pp.194-200, 1998.
    23﹒J.M. Joubet, M. Latroche,“Hydrogen Absorption Properties of Several Inter-
    metallic Compounds of the Zr---Ni System”, J. Alloys Comp., Vol.231,
    pp.494-497, 1995.
    24﹒M. Hara, Y. Hatano, T. Abe, et al.,“Hydrogen Absorption by Pd-Coated ZrNi
    Prepared by Using Barrel-Sputtering System”, J. Nuclear Materials, Vol.320,
    pp.265-271, 2003.
    25﹒B.K. Singh, A.K. Singh, A.M. Imam, et al.,“On the Structural
    Characteristics and Hydrogenation Behaviour of TiMn1.5 Hydrogen Storage
    Material ”, Int. J. Hydrogen Energy, Vol.26, pp.817-821, 2001.
    26﹒C.H. Chiang, Z.H. Chin, T.P. Perng,“Hydrogenation of TiFe by High-Energy
    Ball Milling”, J. Alloys Comp., Vol.307, p.259, 2000.
    27﹒G. Lee, J.S. Kim, Y.M. Koo, S.E. Kulkova,“The Adsorption of Hydrogen on B2
    TiFe Surfaces”, Int. J. Hydrogen Energy, Vol.27, pp.403-412, 2002.
    28﹒R. Janot, L. Aymard, A. Rougier, et al.,“Fast Hydrogen Sorption Kinetics
    for Ball Milled Mg2Ni Alloys”, Journal of Physics and Chemistry of Solids,
    Vol.65, pp.529-534, 2004.
    29﹒K. Aoki, H. Aoyagi, A. Memezawa and T. Masumoto,“Effect of Ball Milling on
    the Hydrogen Absorption Rate of FeTi and Mg2Ni Compounds”, J. Alloys
    Comp., Vol.203, pp.L7-L9, 1994.
    30﹒J.L. Lou, N. Cui,“Effects of microencapsulation on the electrode behavior
    of Mg2Ni-based hydrogen storage alloy in alkaline solution”, J. Alloys
    Comp., Vol.264, p.299, 1998.
    31﹒M. Martin, C. Gommel, C. Borkhart, E. Fromm,“Absorption and Desorption
    Kinetics of Hydrogen Storage Alloys”, J. Alloys Comp., Vol.238, p.193, 1996
    32﹒A. Anani, A. Visintin, K. Petrov and S. Srinivasan,“Alloys for Hydrogen
    Storage in Nickel/Hydrogen and Nickel/Metal Hydride Batteries”, Journal of
    Power Sources, Vol.47, pp.261-275, 1994.
    33﹒T.B. Flanagan and W.A. Oates,“Some Aspects of Equilibrium and Non-
    Equilibrium Phenomena in Intermetallic Compound and Alloy Hydrides”,
    J. Less-Common Met., Vol.100, p.299, 1984.
    34﹒R.C. Bowman,“Preparation and Properties of Amorphous Hydrides”, Materials
    Science Forum, Vol.31, p.197, 1988.
    35﹒K. Aoki, T. Masumoto and J. Kamachi,“Hydrogen Absorption and Desorption
    Properties of Amorphous Ti---Ni and Hf---Ni Alloys”, J. Less-Common Met.,
    Vol.113, p.33, 1985.
    36﹒A. Zuttel,“Materials for Hydrogen Storage”, Materials Today, Vol.6, p.24,
    2003
    37﹒C.E. Lundin and F.E. Lynch,“in Record of the tenth Intersociety Energy
    Conversion Engineering Conference”, p.1380, 1975.
    38﹒K. Aoki, M. Kamachi, T. Masumoto,“Thermodynamics of Hydrogen Absorption
    in Amorphous Zr-Ni Alloys”, J. Non-Cryst. Solids, Vol.61-62, p.679, 1984.
    39﹒V.K. Sinha and W.E. Wallace,“The Hyperstoichiometric ZrMn1+xFe1+y−H2
    System II: Hysteresis Effect”, J. Less-Common Met., Vol.91, p.239, 1983.
    40﹒M.N. Mungole and R. Balasubramaniam,“Effect of Hydrogen Cycling on the
    Hydrogen Storage Properties of MmNi4.2Al0.8”, Int. Hydrogen Energy,
    Vol.25, p.55, 2000.
    41﹒F.G. Eisenberg, P.D. Goodell,“Cyclic Response of Reversible Hydriding
    Alloys in Hydrogen Containing Carbon Monoxide”, J. Less-Common Met.,
    Vol.89, p.55, 1983.
    42﹒M.J. Benham and D.K. Ross,“Inelastic Neutron Scattering Studies of Multiply
    Cycled Lanthanum-Nickel Hydride”, Zeitschrift fur Physikalische Chemie,
    Vol.147, p.219, 1986.
    43﹒V.Z. Mordkovich, N.N. Korostyshevsky, Y.K. Baychtok, et al.,“Degradation
    of LaNi5 by Thermobaric Cycling in Hydrogen and Hydrogen-Nitrogen Mixture”,
    Int. Hydrogen Energy, Vol.15, p.723, 1990.
    44﹒林文德,廖世傑,“儲氫系統設計”, 工業材料, Vol.190, p.155, 2002.
    45﹒J.J. Sheridan, F.G. Eisenberg, E.J. Greskovich, et al.,“Hydrogen
    Separation From Mixed Gas Streams Using Reversible Metal Hydrides”, J.
    Less-Common Met., Vol.89, p.447, 1983.
    46﹒M. Kawamura, S. Ono, Y. Mizuno,“Dynamic Characteristics of a Hydride Heat
    Storage System”, J. Less-Common Met., Vol.89, p.365, 1983.
    47﹒大角泰章著,“金屬氫化物的性質與應用”,吳永寬,苗艷秋譯. 北京:化學
    工業出版社, p.240, 1990.
    48﹒G. Anevi, L. Jansson, D. Lewis,“Dynamics of Hydride Heat Pumps”, J. Less-
    Common Met., Vol.104, p.341, 1984.
    49﹒M. Ron,“A Hydrogen Heat Pump as a Bus Air Conditioner”, J. Less-Common
    Met., Vol.104, p.259, 1984.
    50﹒E. Tuscher, P. Weinzierl, J. Eder,“Dynamic Hydrogen Sorption And Its
    Influence on Metal Hydride Heat Pump Operation”, Int. Hydrogen Energy,
    Vol.9, p.783, 1984.
    51﹒M.S. Vreeke, D.T. Mah, C.M. Doyle,“Report of the Electrolytic Industries
    for the Year 1997”, J. Electrochem. Soc., Vol.145, p.3684, 1998.
    52﹒鍾俐娟,“電動車的發展概況”, 材料與社會, Vol.80, p.123, 1993.
    53﹒D.F. Gosden,“Battery Requirements for Electric Vehicles”, Journal of
    Power Sources, Vol.45, pp.61-71, 1993.
    54﹒F. Zhan, L.J. Jiang, B.R. Wu, et al.,“Characteristics of Ni/MH Power
    Batteries and Its Application to Electric Vehicles”, J. Alloys Comp.,
    Vol.293-295, p.804, 1999.
    55﹒H. Imai, T. Tagawa, K. Nakamura,“Catalytic Activities of Hydrogen Storage
    Alloys for Decompositon of Alcohols”, Appl. Catal., Vol.62, p.348, 1990.
    56﹒T. Takeshita, W.E. Wallace, R.S. Craig,“Rare Earth Intermetallics as
    Synthetic Ammonia Catalysts”, J. Catal., Vol.44, p.236, 1976.
    57﹒J.S. Benjamin,“Dispersion Strengthened Superalloys by Mechanical
    Alloying”, Metallurgical Transactions, Vol.10, p.2943, 1970.
    58﹒H. Sakaguchi, T. Sugioka and G.Y. Adachi,“Hydrogen Absorption
    Characteristics of Crystalline LaNi5 Prepared by Mechanical Alloying”,
    Chemistry Letters, Vol.7, p.561, 1995.
    59﹒C. Suryanarayana,“Mechanical Alloying and Milling”, Prog. Mater. Sci.,
    Vol.46 p.1, 2001.
    60﹒R.K. Ibrasheva, T.A. Solomina, G.I. Leonova, et al.,“Role of Active
    Surface in Processes of Hydrogen Sorption-Desorption by Intermetallic
    Compounds”, Int.J. Hydrogen Energy, Vol.18, pp.505-510, 1993.
    61﹒C. Suryanarayana,“Does a disordered γ-TiAl phase exist in mechanically
    alloyed Ti---Al powders? ”, Intermetallics, Vol.3, pp.153-160, 1995.
    62﹒A. Calka and J.S. Williams,“Synthesis of Nitrides by Mechanical Alloying”,
    Materials Science Forum, Vol.88-90, p.787, 1992.
    63﹒Y. Chen and J. Williams,“Hydriding Reaction Induced by Ball Milling”,
    Materials Science Forum, Vol.225-227, p.881, 1996.
    64﹒J.H. Woo, C.B. Jung, J.H. Lee, and K.S. Lee,“Electrochemical
    Characteristics of Nanocrystalline ZrCr2 and Mg2Ni Type Metal Hydrides
    Prepared by Mechanical Alloying”, J. Alloys Comp., Vol.293-295, pp.556-
    563, 1999.
    65﹒J. Chen, P. Yao, D.H. Bradhurst, et al.,“Mg2Ni-Based Hydrogen Storage
    Alloys for Metal Hydride Electrodes”, J. Alloys Comp., Vol.293-295,
    p.675, 1999.
    66﹒T. Kohno, M. Yamamoto, and M. Kanda,“Electrochemical Properties of Mecha
    nically Ground Mg2Ni Alloy”, J. Alloys Comp., Vol.293-295, p.643, 1999.
    67﹒A. Gasiorowski, W. Iwasieczko, D. Skoryna, et al.,“Hydriding Properties of
    Nanocrystalline Mg2−xMxNi Alloys Synthesized by Mechanical Alloying (M=Mn,
    Al)”, J. Alloys Comp., Vol.364, pp.283-288, 2004.
    68﹒L. Zaluski, A. Zaluska, J.O. Strom-Olsen,“Hydrogen Absorption in Nano-
    crystalline Mg2Ni Formed by Mechanical Alloying”, J. Alloys Comp.,
    Vol.217, p.245, 1995.
    69﹒T. Kohno and M. Kanda,“Effect of Partial Substitution on Hydrogen Storage
    Properties of Mg2Ni Alloy”, J. Electrochem. Soc., Vol.144, p.2384, 1997.
    70﹒H. Aoyagi, K. Aoki, T. Masumoto,“Effect of Ball Milling on Hydrogen
    Absorption Properties of FeTi, Mg2Ni and LaNi5”, J. Alloys Comp., Vol.231,
    p.804, 1995.
    71﹒M. Bououdina, Z.X. Guo,“Comparative Study of Mechanical Alloying of
    (Mg+Al) and (Mg+Al+Ni) Mixtures for Hydrogen Storage”, J. Alloys Comp.,
    Vol.336, p.222, 2002.
    72﹒L. Zaluski, A. Zaluska and J.O. Strom-Olsen,“Nanocrystalline Metal
    Hydrides”J. Alloys Comp., Vol.253-254, p.70, 1997.
    73﹒T. Spassov, P. Solsona, S. Surinach, M.D. Baro,“Optimisation of the Ball-
    Milling and Heat Treatment Parameters for Synthesis of Amorphous and
    Nanocrystalline Mg2Ni-Based Alloys”, J. Alloys Comp., Vol.349, p.242, 2003.
    74﹒M.Y. Song, M. Pezat, B. Darriet, P. Hagenmuller,“A Kinetic Study on the
    Reaction of Hydrogen with Mg2Ni”, J. Solid State Chem., Vol.56, p.191,
    1985.
    75﹒R. Kirchheim, F. Sommer, and G. Schluckebier,“Hydrogen in Amorphous Metals
    ”, Acta Metall., Vol.30, p.1059, 1982.
    76﹒T. Sato, H. Blomqvist, D. Noreus,“Attempts to Improve Mg2Ni Hydrogen
    Storage by Aluminium Addition”, J. Alloys Comp., Vol.356-357, p.494, 2003.
    77﹒L.B. Wang, J.B. Wang, H.T. Yuan, et al.,“An Electrochemical Investigation
    of Mg1-xAlxNi (0≦x≦0.6)Hydrogen Strorage Alloys”, J. Alloys Comp.,
    Vol.385, p.304, 2004.

    QR CODE
    :::