| 研究生: |
陳日憲 Rih-Sian Chen |
|---|---|
| 論文名稱: |
嬰兒安全監控及音樂互動系統之研製 The Development of a Baby Safety Monitoring and Musical Interaction System |
| 指導教授: | 蘇木春 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 嬰兒 、音樂學習 、危險監控 、嵌入式系統 |
| 外文關鍵詞: | baby, music learning, danger monitoring, embedded system |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於嬰兒尚未發展完全,常常處在危險環境中卻不自覺,因此近年來有關嬰兒監控的產品與研究有蓬勃的發展。另一方面,年輕父母重視嬰兒成長過程,他們會藉由音樂學習、聽覺刺激等方式來陪伴嬰兒成長。本論文的目標是開發一套為嬰兒設計的安全監控與音樂互動系統,提供嬰兒更安全的生活環境,並且成為嬰兒最好的玩伴。起初,系統會先偵測嬰兒的臉部資訊,然後以其臉部大小為基底,建立其肢體的感興趣區域模型(region of interest model, ROI model)。我們藉由動態背景相減法,得到各肢體ROI model的動態資訊,並且為這些動態資訊加入時間資訊,作為類神經網路的輸入特徵。本論文的類神經網路架構為:8顆輸入神經元、單隱藏層、10顆隱藏層神經元以及11顆輸出神經元。類神經網路會分類出11種類型的狀態,其中包含6種安全類狀態以及5種危險類狀態。當嬰兒處於危險狀態時,系統會立即發出警示給照護者。另一方面,嬰兒在揮動肢體的時候,系統會辨識出其揮動的肢體,利用MIDI改變音樂,與嬰兒互動。系統平台是使用Cubieboard 4嵌入式系統開發板為基底進行開發,目的在於體積小、成本低,容易應用在一般家庭環境。本論文之危險監控可以幫助照護者在進行其他工作(如:煮飯、泡奶等)時,有效地偵測危險,避免遺憾發生;音樂互動功能則是提供嬰兒探索環境的樂趣,以及刺激其聽覺能力與肢體發展。
實驗的設計上分成九種情境,每種情境都會有特定狀態種類輸出,其中五種情境為危險狀況發生的情境;四種為安全或音樂互動的情境。本論文使用混淆矩陣統計每種狀態的辨識結果,辨識之指標我們採用精確度(Precision)、召回率(Recall),其中,精確率為86.6%、召回率85.7%。
The research of baby monitor systems has been greatly growing in these years because of newborn infants are usually in hazardous environments are not conscious; On the other hand, young parents concern about the periods of babies growing up. They apply to be learning music, auditory stimulation, etc. to accompany growth of the babies. This thesis aims to develop a system to baby monitoring and musical interaction, system provide a safer living environment, and to be the best playmate for infants. The system starts from the detection of the face information of infant, then establishes limbs ROI model based on the face information. We use dynamic background subtraction algorithm to obtain dynamic information about each limb ROI model, and add some time information to this dynamic information, then the information will be the input of neural network input. Neural network architecture of this thesis is as follows: 8 input neurons, single hidden layer, 10 neurons in the hidden layer and eleven output neurons. The neural network can classify 11 types of state, which includes 6 security status, and five kinds of dangerous status. When the baby is in danger, the system will alarm the guardians immediately. On the other hand, when baby waving limbs, the system will recognize baby’s waving limb, then interact with the baby by changing music via MIDI. System develops with the basement of embedded development board-Cubieboard 4, it has the advantage of small size, low cost and easy to apply in general living environment. In this thesis, the function of danger monitoring detects dangerous events effectively, therefore, guardians can perform other tasks (such as: cooking, hot milk, and so on.) easily; The function of musical interaction can provide the babies can environment to explore for fun, stimulate their hearing ability and physical development.
The performance of the proposed system was verified by nine experimental scenarios, each scenario had specific types of output state, five of which scenario will occur dangerous events, the others are secure scenarios which include musical interaction events. This thesis computes results for each state of confusion matrix, and the results of the indicators we use Precision and Recall, the precision ratio and the recall ratio were 86.6% and 85.7%, respectively.
[1] Central Intelligence Agency: THE WORLD FACTBOOK. [Online]. Available: https://goo.gl/bjTuuq. [Accessed: 9-Jul-2016].
[2] 媽媽育兒百科:嬰兒發展,讓寶寶聽音樂好處.[Online]. Available: http://mombaby.tw/article14192.html. [Accessed: 02-Jul-2016].
[3] Babies’ brains benefit from music lessons, even before they can walk and talk. [Online]. Available: http://goo.gl/0RNZU5. [Accessed: 15-May-2016].
[4] 媽媽育兒百科:嬰兒聽音樂幫助成長和發育. [Online]. Available: http://mombaby.tw/article14403.html. [Accessed: 06-Jul-2016].
[5] Amazon: iBaby Wi-Fi Wireless Digital Baby Video Camera with Night Vision and Music Player. [Online]. Available: http://goo.gl/41C6nY. [Accessed: 03-Jul-2016].
[6] Amazon: Withings Smart Baby Monitor. [Online]. Available: http://goo.gl/XwiQLz. [Accessed: 03-Jul-2016].
[7] Amazon: Angelcare Movement and Sound Monitor for Smart Phone. [Online].Available:https://goo.gl/6GGtUS. [Accessed: 03-Jul-2016].
[8] Amazon: Baby monitor. [Online]. Available: https://goo.gl/vJiTCE. [Accessed: 1-Jul-2016].
[9] Amazon:Fosbaby Digital Video Baby Monitor by Foscam. [Online]. Available: http://goo.gl/sYjwUL. [Accessed: 03-Jul-2016].
[10] Amazon: Foscam FBM3502 Digital Video Baby Monitor, Auto Motion Tracking. [Online]. Available: http://goo.gl/Fy2z2n. [Accessed: 03-Jul-2016].
[11] Amazon: Cyber-Bay Intelligent Mini Baby Monitor. [Online]. Available: http://goo.gl/KW1V1K. [Accessed: 03-Jul-2016].
[12] Amazon: Motorola MBP8 Digital Audio Monitor. [Online]. Available: http://goo.gl/R5mXKy. [Accessed: 03-Jul-2016].
[13] Amazon: Motorola MBP36S Remote Wireless Video Baby Monitor with 3.5-Inch Color LCD Screen, Remote Camera Pan, Tilt, and Zoom. [Online]. Available: http://goo.gl/gtaALn. [Accessed: 03-Jul-2016].
[14] Amazon: Gynoii WiFi Wireless Video Baby Monitor with HD Infrared Night Vision, Two Way Audio and Time-Lapse for iPhone, iPad, Android Phones and tablets. [Online]. Available: http://goo.gl/NlM1Zg. [Accessed: 03-Jul-2016].
[15] Amazon: Snuza Baby Monitor, Hero. [Online]. Available: http://goo.gl/3i0fTr. [Accessed: 03-Jul-2016].
[16] Amazon: iBaby Monitor M6 HD Wi-Fi Wireless Digital Baby Video Camera with 360 Rotation, Night Vision, Two-way Speakers and Music Player for iPhone and Android, White. [Online]. Available: http://goo.gl/t8utm1. [Accessed: 03-Jul-2016].
[17] 宋文舉,台北榮總兒童醫學部:嬰兒猝死症. [Online]. Available: http://homepage.vghtpe.gov.tw/~ped/newpage32.htm. [Accessed: 09-Jul-2016].
[18] W. L. Ou, S. M. Yu, J. W. Chang, and C. P. Fan, “Video based vomit and facial foreign object detections for baby watch and safety,” 2013 International Conference on Orange Technologies, pp. 219-222, 2013.
[19] L. Li, Y. Chen, and Z. Li, “Yawning detection for monitoring driver fatigue based on two cameras,” 2009 12th International IEEE Conference on Intelligent Transportation Systems, pp. 1-6, 2009.
[20] 林漢威,「以表情辨識為基礎之嬰兒意外監控系統」,國立臺灣師範大學資訊工程研究所碩士論文,民國九十八年。
[21] J. Bhatt, N. D. V. Lobo, M. Shah, and G. Bebis, “Automatic recognition of a baby gesture,” 15th IEEE International Conference on Tools with Artificial Intelligence, pp. 610-615, 2003.
[22] 邵柏潤,「以肢體動作分析為基礎之新生兒意外監控系統」,國立臺灣師範大學資訊工程研究所碩士論文,民國九十八年。
[23] 蕭宛甄,「以前景物動在機率模型為基礎之嬰兒危險程度評估系統」,國立臺灣師範大學資訊工程研究所碩士論文,民國九十九年。
[24] N. Hafner, I. Mostafanezhad, V. M. Lubecke, O. Boric-Lubecke, and A. Host-Madsen, “Non-Contact Cardiopulmonary Sensing with a Baby Monitor,” 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2300-2302, 2007.
[25] Wei Lin, R. Zhang, J. Brittelli, and C. Lehmann, “Wireless Infant Monitoring Device for the prevention of sudden infant death syndrome,” The 11th International Conference & Expo on Emerging Technologies for a Smarter World, pp. 1-4, 2014.
[26] H. Cao, L. C. Hsu, T. Ativanichayaphong, J. Sin, and J. C. Chiao, “A non-invasive and remote infant monitoring system using CO2 sensors,” 2007 IEEE Sensors, pp. 989-992, 2007.
[27] 林朱彥,「幼兒聽覺與音樂能力發展知多少」,國教之友,第六十卷第一期,37-44頁,國立台南大學國教之友社,民國九十八年。
[28] 劉英淑,「兒童發展與音樂教育」,國家圖書館研習資訊學刊,15-17頁,民國七十七年。
[29] Ebulobo:熊抱抱床邊懸掉玩具旋轉音樂盒. [Online]. Available: http://goo.gl/Oq1037. [Accessed: 27-May-2016].
[30] Toyroyal:魔術球. [Online]. Available: http://goo.gl/dlyjAz. [Accessed: 27-May-2016].
[31] 林志杰,新版MIDI玩家手冊,第三波出版社,民國八十三年。
[32] 陳幗眉,洪福財,兒童發展與輔導,初版,五南書局,台北市,民國九十八年。
[33] Cubieboard: Cubieboard4(CC-A80). [Online]. Available: http://goo.gl/IdmAoG. [Accessed: 9-Jul-2016].
[34] CNET: Logitech QuickCam Pro 5000 Specifications. [Online]. Available: http://goo.gl/5Ka80a. [Accessed: 9-Jul-2016].
[35] N. Srichumroenrattana, C. Lursinsap, and R. Lipikorn, “Facial Feature Detection Using Multiresolution Decomposition and Hillcrest-Valley Classification with Adaptive Mean Filter,” Fourth International Conference on Computer Sciences and Convergence Information Technology, pp. 697-701, 2009.
[36] 蘇木春,張孝德,機器學習:類神經網路、模糊系統以及基因演算法則,修訂二版,全華圖書,新北市,民國一百零一年。
[37] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, pp.85-117, 2015.
[38] Deeplearnin4j: Restricted Boltzmann Machines. [Online]. Available: http://deeplearning4j.org/restrictedboltzmannmachine. [Accessed: 29-Jul-2016].
[39] CSDN: 深度學習與受限波爾茲曼機. [Online]. Available: http://goo.gl/sNw614. [Accessed: 29-Jul-2016].
[40] CSDN: DBN. [Online]. Available: http://goo.gl/I4UGxb. [Accessed: 29-Jul-2016].
[41] Deeplearnin4j: Convolutional Networks. [Online]. Available: http://goo.gl/V9T7gG. [Accessed: 29-Jul-2016].
[42] TensorFlow: About TensorFlow. [Online]. Available: https://www.tensorflow.org/. [Accessed: 20-Jul-2016].
[43] Deeplearning4j: Quick Start Guide for Deeplearning4j. [Online]. Available: http://deeplearning4j.org/quickstart. [Accessed: 13-Jul-2016].