跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐妙華
Miao-hua Syu
論文名稱: 具仿生結構之混能式壓力/風能傳感器與深度學習姿態辨識之應用
Biomimetic fiber-based hybrid sensor for Multifunctional Pressure Sensing and human gesture identification via Deep Learning Method
指導教授: 李雄
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 62
中文關鍵詞: 近場電紡織技術PVDFP(VDF-TrFE)可撓性印刷電路板仿生混能式自供電感測器Long Short-Term Memory (LSTM)
相關次數: 點閱:28下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用近場電紡織技術(near-field electrospinning,NFES)製作具有壓電奈米纖維之奈米發電機(nanogenetator,NG),將具有高度壓電性能的高分子材料聚偏氟乙烯(polyvinylidene fluoride,PVDF)及其共聚物poly(vinylidene fluorideco-trifluoroethylene,P(VDF-TrFE))精確的沉積在可撓性基板上,以製作成具奈微米纖維(nano/micro fibers,NMFs)壓電奈米發電機。其一以可撓性印刷電路板(printed circuit board,PCB)沉積PVDF壓電纖維,並透過結合了之聚二甲基矽氧烷(polydimethylsiloxane,PDMS)翻印具仿生奈米表面結構來提高靜電效應輸出,靜電發電機與壓電發電機製成仿生混能式自供電感測器(Biomimetic Hybrid self-powered sensors,BHSS)。將具有仿生奈米表面結構之混能式感測器用以量測人體因不同姿態動作所產生不同的電壓輸出,並將其輸出訊號應用在感測人體動作,藉由產生的訊號使用機器學習長短期記憶(Long Short Term Memory,LSTM)演算法來分辨不同的動作,可以達到82.3%的準確率。其二,本論文亦進一步研究利用P(VDF-TrFE)製成之奈米發電器應用於風能收集的可能性,利用奈米發電機柔軟、可撓的特性,製成風能發電器,進行了風速與輸出電壓相關之研究、戶外實驗收集環境風能,實驗表明此風能發電器即使在低風速(~3.5 m / s)下也能持續發電(~2V)。


    Within this paper, Near-field electrospinning (NFES) technological employed to deposit your nano/micro fibers for the different starting, and a new nanogenerator (NG)/deformation sensor ended up being fabricated. Within this study, polyvinylidene fluoride (PVDF), a polymer product with substantial piezoelectric components, was lodged and properly arranged with a flexible substrate by direct-write process using near-field electrospinning technological and XY detail motion stage as being a piezoelectric nano-generator. One of the research use of flexible printed circuit board (PCB) to deposit piezoelectric fibers, in order to make the generator more efficient to collect mechanical energy, we applied Mytilidae nano-structured patterns on the surface of PDMS film via the soft transfer molding technique as electrostatic generator. We combined the and piezoelectric generator and biomimetic triboelectric generator as biomimetic hybrid self-powered sensors (BHSS). Furthermore, an intelligent glove and the force sensor with are successively confirmed that the developed BHSS has promising applications in wearable self-power sensor technology. The machine learning algorithm of Long Short-Term Memory (LSTM) in the context of gesture recognition was used and effectively distinguish five human actions satisfactorily. LSTM based real-time electrical signals of five gestures dataset with varying duration and complexity can achieve an overall classification rate of 82.3%.
    This paper also further studies the possibility of using nanogenerators made of P(VDF-TrFE) for wind energy collection, using the soft and flexible characteristics of nanogenerators to make wind energy generators and wind speed. Research related to output voltage, outdoor experiments and collection of ambient wind energy to assess the potential of wind energy generators and their electrical output. This wind power generator can continue to generate electricity (~2V) even at low wind speeds (~3.5 m / s).

    目錄 摘要 VI Abstract VII 致謝 IX 圖目錄 XII 第一章 緒論 1 1-1前言 1 1-2研究動機與方法 1 第二章 文獻回顧 3 2-1電紡織技術 3 2-2混能式奈米自供電感測器應用 4 第三章 應用近場電紡織壓電纖維製作混能式傳感器與姿勢辨識 6 3-1 實驗 6 3-1-1實驗樣品 6 3-1-2 量測設備架構 9 3-2結果與討論 12 第四章 利用P(VDF-TrFE)纖維改善壓電奈米發電機性能並應用於風能發電器 26 4-1導論 26 4-2實驗 26 4-2-1 電紡織溶液 26 4-2-2 P(VDF-TrFE)奈米纖維發電機製作 27 4-3結果與討論 29 第五章 結論 36 參考文獻 38 實驗儀器 43

    參考文獻
    [1] J. Chang, M. Dommer, C. Chang, L. Linn, Piezoelectric nanofibers for energy scavenging applications, Nano Energy, 2012, 1, 356-371
    [2] Dr. K. Dong, Dr. Z. Wu, Dr. J. Deng, A. C. Wang, H. Zou, C. Chen, Z. L. Wang. A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing Adv. Mater. 2018, 1804944
    [3] C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro, L. Beccai, B. Mazzolai, R. Shepherd, Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016, 351, 1071.
    [4] Q. Sun, W. Seung, B. J. Kim, S. Seo, S. W. Kim, J. H. Cho, Active Matrix Electronic Skin Strain Sensor Based on Piezopotential-Powered Graphene Transistors. Adv. Mater. 2015, 27, 3411.
    [5] Z.L. Wang, J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 312 ,2006, 242–246.
    [6] G. Zhu, W. Q. Yang, T. Zhang, Q. Jing, J. Chen, Y. S. Zhou, P. Bai, Z. L. Wang, Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 2014, 14, 3208.
    [7] X. D. Wang, J. H. Song, J. Liu, Z. L. Wang, Direct-current nanogenerator driven by ultrasonic waves., Science, 2007, 316, 102.
    [8] C. Chang, V. H. Tran, J. Wang, Y. Fuh, L. Lin, Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency, Nano Lett., 2010, 10, 726.
    [9] D. Choi, et al., Fully Rollable Transparent Nanogenerators Based on Graphene Electrodes, Adv. Mater., 2010, 22, 2187.
    [10] S. Xu, Y. Qin, C. Xu, Y. G. Wei, R. Yang, Z. L. Wang, Self-powered nanowire devices., Nat. Nanotechnol., 2010, 5, 367.
    [11] Y. Qin, X. D. Wang, Z. L. Wang, Microfiber-Nanowire Hybrid Structure for Energy Scavenging., Nature, 2008, 451, 809.
    [12] Y. Qin, et al., Nano Lett., 2010, 10, 34.
    [13] R. Yang, Y. Qin, L. Dai, Z. L. Wang, Power generation with laterally packaged piezoelectric fine wires., Nat. Nanotechnol., 2009, 34.
    [14] X. H, et al., Adv. Funct. Mater., 2017, 27, 4, 1601255.
    [15] Y. C. Lai, et al., Single-Thread-Based Wearable and Highly Stretchable Triboelectric Nanogenerators and Their Applications in Cloth-Based Self-Powered Human-Interactive and Biomedical Sensing, Adv. Funct. Mater., 2017, 27, 1, 1604462.
    [16] S. W. Chen, et al., An Ultrathin Flexible Single‐Electrode Triboelectric‐Nanogenerator for Mechanical Energy Harvesting and Instantaneous Force Sensing, Adv. Energy Mater., 2017, 7, 1, 1601255.
    [17] F. L. Zhou, R.H. Gong, I. Porat, J. Appl. Polym. Sci., 2010, 115, 2591.
    [18] Y. K. Fuh, B. S. Wang, C. Yu. Tsai, Self-Powered Pressure Sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array, Scientific Report, 2017, SREP-16-50149B.
    [19] J. D. Schiffman, C. L. Schauer, Cross-linking chitosan nanofibers., Biomacromolecules, 2007, 8, 2665.
    [20] C. Chang, K. Limkrailassiri, L.W. Lin, Photoemission Study of Sm Overlayers Deposited on Nb, Appl. Phys. Lett., 2008, 93, 123111.
    [21] Y. K. Fuh, B. S. Wang, Near field sequentially electrospun three dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition, Nano Energy, 2016, 30, 677-683.
    [22] J. Chang, L. Lin, Transducers, 2011,747.
    [23] Y. K. Fuh, P. C. Chen, Z. M. Huang, H. C. Ho, Self-powered sensing elements based on direct-write, highly flexible piezoelectric polymeric nano/microfibers, Nano Energy 2015, 11, 671.
    [24] Y. K. Fuh, S. C. Lee, C. Y. Tsai, Application of Highly flexible self-powered sensors via sequentially deposited piezoelectric fibers on printed circuit board for wearable electronics devices, Sensors and Actautors - A: Physical, 2017, 268, 148-154.
    [25] F. Gers, N. Schraudolph, and J. Schmidhuber, Learning Precise Timing with LSTM Recurrent Networks. Journal of Machine Learning Research, vol. 3, pp. 115–143, 2002.
    [26] P. Molchanov, S. Gupta, K. Kim, J. Kautz, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2015, Page(s): 1 – 7
    [27] Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 2015, 521, 436-444.
    [28] G. Q. Zhao, G. H. Zhang, Q. Q. Ge, X. Y. Liu, PHM Conf. Research advances in fault diagnosis and prognostic based on deep learning, Chengdu, China, October 2016.
    [29] E. Tsironi, P. Barros , S. Wermter , Gesture recognition with a convolutional long short-term memory recurrent neural network, in: Proceedings of the TwentyFourth European Symposium on Artifical Neural Networks, Computational Intelligence and Machine Learning, 2016, pp. 213–218 .
    [30] J. Donahue, L.A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, T. Darrell, K. Saenko, Long-term recurrent convolutional networks for visual recognition and description, in: Proceeding of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 2625–2634,
    [31] C. B. Han, C. Zhang, W. Tang, X. H. Li, Z. L. Wang, High power triboelectric nanogenerator based on printed circuit board (PCB) technology, Nano Res. ,2015, 722-730.
    [32] S. Priya, Modeling of electric energy harvesting using piezoelectric windmill, Appl. Phys. Lett., 2005,87, 184101.
    [33] G. Zhu, R. Yang, S. Wang, Z. L. Wang, Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array, Nano Lett., 2010, 10, 3151.
    [34] J. Chen, G. Zhu, J. Yang, Q. Jing, P. Bai, W. Yang, X. Qi, Y. Su, Z. L. Wang, Personalized Keystroke Dynamics for Self-Powered Human–Machine Interfacing, ACS Nano, 2015, 9, 105-116.
    [35] X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi, C. Hu, Z. L. Wang, Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator , Sci. Adv., 2017, 3, e1700694.
    [36] Y. K. Fuh, S.Y. Chen, C. S. Yeh, Massively parallel aligned microfibers-based harvester deposited via in situ, oriented poled near-field electrospinning, Applied Physics Letters, 2013, 103, 3, 033014.
    [37] Y. K. Fuh, J. C. Ye, P. C. Chen, H. C. Ho, Z. M. Huang, A hybrid energy harvester consisting of piezoelectric fibers with largely enhanced 20V for wearable and muscle-driven applications, ACS Applied Materials & Interfaces, 2015, 7, 16923.
    [38] Y.K. Fuh, P. C. Chen, Z. M. Huang, All-direction energy harvester based on nano/micro fibers as flexible and stretchable sensors for human motion detection, RSC Advances, 2015, 5, 67787.
    [39] Y. K. Fuh, C. S. Yeh, P. C. Chen, Z. M. Huang, A highly flexible and substrate-independent self-powered deformation sensor based on massively aligned piezoelectric nano-/microfibers, Journal of Materials Chemistry A, 2014, 2, 38, 16101.
    [40] T. H. Lee, C. Y. Chen, C. Y. Tsai, Y. K. Fuh, Near-Field Electrospun Piezoelectric Fibers as Sound-Sensing Elements. Polymers, 2018, 10(7): 692.
    [41] B. Yu, H. Yu, T. Huang, H. Wang, M. Zhu, A Biomimetic Nanofiber-Based Triboelectric Nanogenerator with an Ultrahigh Transfer Charge Density. Nano Energy, 2018, 464-470
    [42] J. Andrew and D. Clarke, “Effect of Electrospinning on the Ferroelectric Phase Content of Polyvinylidene Difluoride Fibers” Langmuir, 2008, 24, pp. 670-672.
    [43] S. Chen, K. Yao, F. Tay and L. Chew, “Comparative investigation of the structure and properties of ferroelectric poly(vinylidene fluoride) and poly(vinylidene fluoride–trifluoroethylene) thin films crystallized on substrates”. J. Appl. Polym. Sci, 2010, 116, pp. 3331-3337.

    QR CODE
    :::