| 研究生: |
鄧旭軒 Shu-Shuan Deng |
|---|---|
| 論文名稱: |
以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究 Fabrication of P type and N type Hydrogenated Microcrystalline Silicon Thin Films Using RF Magnetron Sputtering |
| 指導教授: |
陳昇暉
Sheng-Hui Chen 李正中 Cheng-chung Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 微晶矽薄膜 、物理氣相沈積法 、太陽能電池 |
| 外文關鍵詞: | microcrystalline silicon thin film, PVD, Solar cell |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於能源危機的問題,薄膜式太陽電池的研究引起很多專家學者的注意。目前最普遍為民生所使用的太陽電池是由電漿輔助化學氣相沈積法(plasma-enhance chemical vapor deposition, PECVD)所製作出的非晶矽薄膜太陽電池[1][2],但是PECVD 在製程上需要昂貴的設備費及使用有毒、易燃氣體矽烷( silane , SiH4),而且微晶矽薄膜比非晶矽薄膜電性更佳,因此本研究主旨在探討使用射頻磁控濺鍍製作P型和N型微晶矽薄膜應用於薄膜式太陽電池的研究。利用調變不同靶材面積和氫氣流量來改變硼原子和磷原子的摻雜量,製作出微晶矽薄膜,並量測其特性。將實驗所製作出的薄膜量測Alpha-Step、XRD、導電率、載子濃度、載子遷移率、活化能等,得到薄膜的結構和電性的結果,作分析與比較。於實驗中發現,以射頻磁控濺鍍系統所製作出的微晶矽薄膜,P型矽薄膜導電率最佳值在硼顆粒約佔靶材面積30%和氫氣流量為9sccm時,其導電率為3.79×10-2(S/cm),結晶大小為4.84nm,由霍爾量測得到載子濃度約為3.34×1018cm-3載子遷移率為0.516 cm2/V-S,活化能為0.044ev;N型矽薄膜導電率最好的參數為靶材放置是矽靶加上3/4wafer且氫氣流量為7sccm時導電率可達到9.66×10-3(S/cm),結晶大小為12.5nm,霍爾量測儀所量測出來的雜質濃度約為1.11×1018cm-3,載子遷移率為0.525cm2/V-S,活化能為0.11ev。兩者都有符合做太陽能電池元件n和p型微晶矽薄膜特性的要求。
In the last decades, the researches of thin film solar cells have attracted much attention for the reason of the energy crisis. Plasma-enhance chemical vapor deposition (PECVD) is the most popular method to fabricate silicon thin film solar cells. The disadvantages of PECVD are the high facility cost and using the toxic processing gases such as silane (SiH4), B2H6 and PH5. To solve the problem the reactive radio frequency sputtering deposition was applied in this research, which is a safe and cheap method to fabricate the doped hydrogenated microcrystalline silicon without using any toxic gas. The p type and n type hydrogenated microcrystalline silicon (μc-Si:H) thin films were fabricated with the different concentration of the doped target and the hydrogen gas flow. The properties of the films were measured using Alpha–Step, XRD, conductivity, carrier concentration, carrier mobility, and activation energy measurement. The results show that when the boron grains occupied 30% of the p type silicon target area and hydrogen flow 9sccm, the best conductivity is achieved at about 3.79×10-2 S/cm for the p type μc-Si:H thin film. The μc-Si:H grain size is 4.84nm in the film. The activation energy is 0.044ev. Using Hall measurement, the carrier concentration is achieved at 3.34×1018cm-3 and carrier mobility 0.516cm2/V-S. Besides, when n type silicon wafer occupied 75% of the silicon target area and hydrogen flow 7sccm for the n type μc-Si:H thin film, the best conductivity is achieved at about 9.66×10-3 S/cm. The μc-Si:H grain size is 12.5nm in the film. The activation energy is 0.11ev. Using Hall measurement, the carrier concentration is achieved at 1.11×1018cm-3 and carrier mobility 0.525cm2/V-S. Both results have met the requirements of p type and n type μc-Si:H thin films for the application of thin film solar cells.
[1] L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato, and R. Martins, "Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell," Solar Energy Mater. Solar Cells 87, 349-355 (2005).
[2] P. Ray, P. Chaudhuri, and P. Chatterjee, "Hydrogenated amorphous silicon films with low defect density prepared by argon dilution: application to solar cells," Thin Solid Films 403, 275-279 (2002).
[3] Koel Adhikary, Swati Ray, "Characteristics of p-type nanocrystalline silicon thin films developed for window layer of solar cells," Journal of Non- Crystalline Solids 353, 2289–2294 (2007).
[4] D. Jousse, J. Said, J. C. Bruyere, "Boron doping of amorphous hydrogenated silicon films prepared by RF sputtering," Thin Solid Films 124, 49-53 (1985).
[5] Y. Ohmura, M. Takahashi, M. Suzuki, N. Sakamoto, T. Meguro, "P-type doping of h ydrogenated amorphous silicon films with boron by reactive radio-frequency co-sputtering," Physica B 308–310,257–260 (2001).
[6]Y. Ohmura, M. Takahashi, M. Suzuki, A. Emura, N. Sakamoto, T. Meguro,"N-type (P, Sb) and p-type (B) doping of hydrogenated amorphous Si by reactive rf co-sputtering," phys. stat. sol. (b) 235,111–114 (2003)
[7]M.M. de Lima Jr., F.L. Freire Jr., and F.C. Marques,"Boron Doping of Hydrogenated Amorphous Silicon Prepared by rf-co-Sputtering," Brazilian Journal of Physics 32,379–382 (2002)
[8] 楊錦章譯,"基礎濺鍍電漿, "電子發展月刊,第68 期,13 (1983)。
[9] S. Shimizu, M. Kondo, and A. Matsuda, "A highly stabilized hydrogenated
amorphous silicon film having very low hydrogen concentration and a improved Si bond network", Journal of applied physics 97, 33522(2005)
[10] 李正中,"薄膜光學與鍍膜技術,"台北,藝軒圖書出版社(2004)。
[11] 趙學禮,"非晶矽太陽能電池之材料成長、元件製作及特性分析"
中央大學,碩士論文,民國96年
[12] R. Biswas and B. Pan, "Microscopic nature of Staebler-Wronski defect
formation in amorphous silicon," Appl. Phys. Lett. 72, 371 (1998).
[13] 許樹恩、吳泰伯,"X 光繞射原理與材料結構分析,"民全書局(1993)
[14] 韓嘉緯,"以射頻磁控濺鍍法鍍製含氫微晶矽薄膜並探討其應用於薄膜太陽能電池之可能性"中央大學,碩士論文,民國96年
[15] 吳秉叡,連水養,武東星,"矽異質接面太陽電池之發展、研製與未來展望," 光學工程 第100期,(2008)