跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳勁瑋
Ching-Wei Chen
論文名稱: 從質子質子對撞在質量中心能量 13 兆電子 伏特利用緊湊渺子偵測器尋找重粒子衰變 到一對希格斯粒子於四個底夸克最終態
Search for Heavy Resonances Decaying into a Pair of Higgs Bosons in the Four b quark Final State from pp Collisions at √s =13 TeV with the CMS Detector
指導教授: 余欣珊
Shin-Shan Eiko Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 85
中文關鍵詞: 大強子對撞機希格斯粒子緊湊 渺子偵測器
外文關鍵詞: heavy resonance, graviton, di-Higgs
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文將呈現尋找重粒子衰變到一對希格斯粒子於四個底夸克最終
    態。分析基於大強子對撞機在質量中心能量 13 兆電子伏特利用緊湊
    渺子偵測器在 2016 收集的數據,總亮度為 35.9𝑓𝑏−1。希格斯粒子是
    由正反底夸克對重建而成。希格斯噴流將由其質量、𝜏21與底夸克標
    記選定。95% 信心水準利用 CLs 計算生產截面乘以衰變分支上限
    介於重粒子的質量從 1.2 兆電子伏特到 3 兆電子伏特低於 10 fb.


    A search for heavy resonances decaying to a pair of Higgs bosons in the four b
    quark final state is presented. The analysis is based on the data collected in 2016
    with the CMS detector at LHC at center-of-mass energy √
    s = 13 TeV, corresponding
    to integrated luminosity of 35.9 f b−1
    . The Higgs bosons are reconstructed
    from high momentum b
    ¯b quark pairs. The mass variable, τ21 discriminator, and
    double-b tagger are used for Higgs tagging. The signal regions are separated by
    double-b tagger into two categories. A 95% upper limit on the production cross
    section of σX × B(X → HH → b
    ¯bb¯b) is obtained from the combination of two
    categories with a limit below 10 fb for mX from 1200 to 3000 GeV

    1 Introduction and Theory Overview 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Wraped Extra Dimension . . . . . . . . . . . . . . . . . . . 2 1.2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Collider and Detector 7 2.1 Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 The Compact Muon Solenoid Detector . . . . . . . . . . . . . . . . 7 2.2.1 Detector Kinematics . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Magnet System . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.3 Tracker Detector . . . . . . . . . . . . . . . . . . . . . . . . 10 Pixel Trackers . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Strip Trackers . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.4 Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . 11 2.2.5 Hadron Calorimeter . . . . . . . . . . . . . . . . . . . . . . 12 2.2.6 Muon Detector . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 The trigger system . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Analysis Strategy 15 3.1 Data and Simulated Samples . . . . . . . . . . . . . . . . . . . . . 15 3.2 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Event Reconstruction and Selection . . . . . . . . . . . . . . . . . . 17 3.3.1 Higgs Jet Reconstruction . . . . . . . . . . . . . . . . . . . . 19 3.3.2 Heavy Resonance Seletion . . . . . . . . . . . . . . . . . . . 21 3.3.3 Higgs Tagging Seletion . . . . . . . . . . . . . . . . . . . . . 22 3.4 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Simulation Distribution . . . . . . . . . . . . . . . . . . . . . . . . 26 3.6 Data and Monte Carlo Comparison . . . . . . . . . . . . . . . . . . 28 4 Background Estimation 37 4.1 Bump Hunt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.3 Alphabet Assisted Bump Hunt . . . . . . . . . . . . . . . . . . . . 41 4.3.1 Signal model . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3.2 Background model . . . . . . . . . . . . . . . . . . . . . . . 42 5 Systematic Uncertainty 45 5.1 Systematic Uncertainty on Signal Selection . . . . . . . . . . . . . 45 5.2 Summary table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6 Final Result 53 6.1 Asymptotic CLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2 95% upper limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Bibliography 57 A Optimization of the Selection 63 A.1 ∆η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 A.2 Double-b Tagger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 A.3 Mass of AK8 Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    [1] Matteo Cacciari and Gavin P. Salam. “Pileup subtraction using jet areas”.
    In: Phys. Lett. B 659 (2008), p. 119. DOI: 10.1016/j.physletb.2007.
    09.077. arXiv: 0707.1378 [hep-ph].
    [2] Georges Aad et al. “Observation of a new particle in the search for the
    Standard Model Higgs boson with the ATLAS detector at the LHC”. In:
    Phys. Lett. B 716 (2012), p. 1. DOI: 10.1016/j.physletb.2012.08.020.
    arXiv: 1207.7214 [hep-ex].
    [3] Lisa Randall and Raman Sundrum. “A large mass hierarchy from a small
    extra dimension”. In: Phys. Rev. Lett. 83 (1999), p. 3370. DOI: 10.1103/
    PhysRevLett.83.3370. arXiv: hep-ph/9905221 [hep-ph].
    [4] Alexandra Oliveira. “Gravity particles from Warped Extra Dimensions, a
    review. Part I - KK Graviton”. Submitted on arXiv. 2014.
    [5] H. Davoudiasl, J. L. Hewett, and T. G. Rizzo. “Phenomenology of the
    Randall-Sundrum Gauge Hierarchy Model”. In: Phys. Rev. Lett. 84 (2000),
    p. 2080. DOI: 10 . 1103 / PhysRevLett . 84 . 2080. arXiv: hep - ph /
    9909255 [hep-ph].
    [6] Kaustubh Agashe et al. “Warped Gravitons at the LHC and Beyond”. In:
    Phys. Rev. D 76 (2007), p. 036006. DOI: 10.1103/PhysRevD.76.036006.
    arXiv: hep-ph/0701186 [hep-ph].
    [7] A. Liam Fitzpatrick et al. “Searching for the Kaluza-Klein Graviton in Bulk
    RS Models”. In: JHEP 09 (2007), p. 013. DOI: 10 . 1088 / 1126 - 6708 /
    2007/09/013. arXiv: hep-ph/0701150 [hep-ph].
    [8] Walter D. Goldberger and Mark B. Wise. “Modulus stabilization with
    bulk fields”. In: Phys. Rev. Lett. 83 (1999), p. 4922. DOI: 10 . 1103 /
    PhysRevLett.83.4922. arXiv: hep-ph/9907447 [hep-ph].
    [9] Csaba Csaki et al. “Cosmology of brane models with radion stabilization”.
    In: Phys. Rev. D 62 (2000), p. 045015. DOI: 10 . 1103 / PhysRevD . 62 .
    045015. arXiv: hep-ph/9911406 [hep-ph].
    [10] Csaba Csaki, Michael L. Graesser, and Graham D. Kribs. “Radion dynamics
    and electroweak physics”. In: Phys. Rev. D 63 (2001), p. 065002. DOI: 10.
    1103/PhysRevD.63.065002. arXiv: hep-th/0008151 [hep-th].
    [11] Gian F. Giudice, Riccardo Rattazzi, and James D. Wells. “Graviscalars from
    higher dimensional metrics and curvature Higgs mixing”. In: Nucl. Phys.
    B 595 (2001), p. 250. DOI: 10.1016/S0550-3213(00)00686-6. arXiv:
    hep-ph/0002178 [hep-ph].
    [12] Nishita Desai, Ushoshi Maitra, and Biswarup Mukhopadhyaya. “An updated
    analysis of radion-higgs mixing in the light of LHC data”. In: JHEP
    10 (2013), p. 093. DOI: 10.1007/JHEP10(2013)093. arXiv: 1307.3765
    [hep-ph].
    [13] Kaustubh Agashe, Oleg Antipin, et al. “Warped Extra Dimensional Benchmarks
    for Snowmass 2013”. In: Community Summer Study 2013: Snowmass
    on the Mississippi (CSS2013) Minneapolis, MN, USA, July 29-August 6, 2013.
    2013. arXiv: 1309.7847 [hep-ph]. URL: http://cp3-origins.dk/
    research/units/ed-tools.
    [14] Vieri Candelise, Ching-Wei Chen, Alice Cocoros, Leonardo Giannini,
    Maxime Gouzevitch, Raman Khurana, Michael Krohn, Gregorio de Leon
    III, Devdatta Majumder, Petar Maksimovic, Marc Osherson, Andrea Rizzi,
    Caterina Vernieri, Steve Wagner, Shin-Shan Eiko Yu. Search for heavy resonances
    decaying to a pair of Higgs bosons in the four b quark final state in protonproton
    collisions at √
    s = 13 TeV. CMS Analysis Note 2016/300_v8. CERN,
    2017. URL: http://cms.cern.ch/iCMS/jsp/openfile.jsp?tp=
    draft\&files=AN2016\_300\_v8.pdf.
    [15] Stefano Catani et al. “Soft gluon resummation for Higgs boson production
    at hadron colliders”. In: JHEP 07 (2003), p. 028. DOI: 10.1088/1126-
    6708/2003/07/028. arXiv: hep-ph/0306211 [hep-ph].
    [16] S Heinemeyer et al. “Handbook of LHC Higgs Cross Sections: 3. Higgs
    Properties”. Submitted on arXiv. 2013.
    [17] Pavel M. Nadolsky et al. “Implications of CTEQ global analysis for collider
    observables”. In: Phys. Rev. D 78 (2008), p. 013004. DOI: 10.1103/
    PhysRevD.78.013004. arXiv: 0802.0007 [hep-ph].
    [18] Johann Brehmer et al. “The Diboson Excess: Experimental Situation and
    Classification of Explanations; A Les Houches Pre-Proceeding”. Submitted
    on arXiv. 2015.
    [19] Vardan Khachatryan et al. “Search for massive resonances in dijet systems
    containing jets tagged as W or Z boson decays in pp collisions at √
    s =
    8 TeV”. In: JHEP 08 (2014), p. 173. DOI: 10.1007/JHEP08(2014)173.
    arXiv: 1405.1994 [hep-ex].
    [20] Georges Aad et al. “Search for resonant diboson production in the ``qq¯
    final state in pp collisions at √
    s = 8 TeV with the ATLAS detector”. In: Eur.
    Phys. J. C 75 (2015), p. 69. DOI: 10.1140/epjc/s10052-015-3261-8.
    arXiv: 1409.6190 [hep-ex].
    [21] Georges Aad et al. “Search for production of WW/W Z resonances decaying
    to a lepton, neutrino and jets in pp collisions at √
    s = 8 TeV with the ATLAS
    detector”. In: Eur. Phys. J. C 75 (2015). [Erratum: 10.1140/epjc/s10052-
    015-3593-4], p. 209. DOI: 10.1140/epjc/s10052-015-3425-6. arXiv:
    1503.04677 [hep-ex].
    [22] Georges Aad et al. “Search for high-mass diboson resonances with bosontagged
    jets in proton-proton collisions at √
    s = 8 TeV with the ATLAS
    detector”. In: JHEP 12 (2015), p. 055. DOI: 10.1007/JHEP12(2015)055.
    arXiv: 1506.00962 [hep-ex].
    [23] Georges Aad et al. “Combination of searches for WW, W Z, and ZZ resonances
    in pp collisions at √
    s = 8 TeV with the ATLAS detector”. Submitted
    to Phys. Lett. B. 2015.
    [24] Vardan Khachatryan et al. “Search for massive resonances decaying into
    pairs of boosted bosons in semi-leptonic final states at √
    s = 8 TeV”. In:
    JHEP 08 (2014), p. 174. DOI: 10.1007/JHEP08(2014)174. arXiv: 1405.
    3447 [hep-ex].
    [25] Vardan Khachatryan et al. “Search for resonant pair production of Higgs
    bosons decaying to two bottom quark-antiquark pairs in proton-proton
    collisions at 8 TeV”. In: Phys. Lett. B 749 (2015), p. 560. DOI: 10.1016/j.
    physletb.2015.08.047. arXiv: 1503.04114 [hep-ex].
    [26] Georges Aad et al. “Search for Higgs boson pair production in the b
    ¯bb¯b final
    state from pp collisions at √
    s = 8 TeV with the ATLAS detector”. In: Eur.
    Phys. J. C 75 (2015), p. 412. DOI: 10.1140/epjc/s10052-015-3628-x.
    arXiv: 1506.00285 [hep-ex].
    [27] CMS Collaboration. “The CMS experiment at the CERN LHC”. In: Journal
    of Instrumentation 3.08 (2008), S08004. URL: http://stacks.iop.org/
    1748-0221/3/i=08/a=S08004.
    [28] Tai Sakuma. 3D SketchUp images of the CMS detector. https : / / cms -
    docdb.cern.ch/cgi-bin/DocDB/ShowDocument?docid=11514.
    [29] Superconducting Magnet. URL: http : / / cms . web . cern . ch / news /
    superconducting-magnet.
    [30] L.Possi et al. Pixel Detectors From Fundamentals to Applications. SpringerVerlag
    Berlin Heidelberg, 2006. ISBN: 3-540-28332-3.
    [31] Johan Alwall et al. “MadGraph 5: going beyond”. In: Journal of High
    Energy Physics 2011.6 (2011), p. 128. ISSN: 1029-8479. DOI: 10 . 1007 /
    JHEP06(2011 ) 128. URL: http : / / dx . doi . org / 10 . 1007 /
    JHEP06(2011)128.
    [32] A. Oliveira. Bulk graviton NLO cross sections in WED at 13 TeV. 2016. URL:
    https://github.com/CrossSectionsLHC/WED/blob/master/
    KKGraviton_Bulk/GF_NLO_13TeV_ktilda_0p1.txt.
    [33] A. Oliveira. Bulk radion NLO cross sections in WED at 13 TeV. 2016. URL:
    https://github.com/CrossSectionsLHC/WED/blob/master/
    Radion_Bulk/GF_NLO_13TeV_LR_3TeV_kl_35.txt.
    [34] A. Oliveira. Bulk graviton to HH decay branching fractions in WED. URL:
    https://github.com/CrossSectionsLHC/WED/blob/master/
    KKGraviton_Bulk/Decay_long.txt.
    [35] A. Oliveira. Bulk radion to HH decay branching fractions in WED. URL:
    https://github.com/CrossSectionsLHC/WED/blob/master/
    Radion_Bulk/Decay_long_kl_35_arxiv1110.6452.txt.
    [36] M. Aaboud et al. “Measurement of the Inelastic Proton-Proton Cross Section
    at √
    s = 13 TeV with the ATLAS Detector at the LHC”. In: Phys.
    Rev. Lett. 117.18 (2016), p. 182002. DOI: 10.1103/PhysRevLett.117.
    182002. arXiv: 1606.02625 [hep-ex].
    [37] MET Filter Recommendations for Run II. https : / / twiki . cern . ch /
    twiki / bin / view / CMS / MissingETOptionalFiltersRun2. 2017.
    URL: https : / / twiki . cern . ch / twiki / bin / view / CMS /
    MissingETOptionalFiltersRun2.
    [38] CMS Collaboration. Commissioning of the Particle–Flow Event Reconstruction
    with the first LHC collisions recorded in the CMS detector. CMS Physics Analysis
    Summary CMS-PAS-PFT-10-001. CERN, 2010. URL: http://cdsweb.
    cern.ch/record/1247373.
    [39] CMS Collaboration. Particle–Flow Event Reconstruction in CMS and Performance
    for Jets, Taus, and. CMS Physics Analysis Summary CMS-PASPFT-09-001.
    CERN, 2009. URL: http://cdsweb.cern.ch/record/
    1194487.
    [40] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The anti-kt
    jet clustering
    algorithm”. In: JHEP 04 (2008), p. 063. DOI: 10.1088/1126-6708/
    2008/04/063. arXiv: 0802.1189 [hep-ph].
    [41] Daniele Bertolini et al. “Pileup Per Particle Identification”. In: JHEP 10
    (2014), p. 059. DOI: 10.1007/JHEP10(2014)059. arXiv: 1407.6013
    [hep-ph].
    [42] Jet Identification Recommendations for 13 TeV data analysis. https :
    / / twiki . cern . ch / twiki / bin / view / CMS / JetID #
    Recommendations_for_13_TeV_data. 2015. URL: https://twiki.
    cern.ch/twiki/bin/view/CMS/JetID#Recommendations_for_
    13_TeV_data.
    [43] Andrew J. Larkoski et al. “Soft Drop”. In: JHEP 05 (2014), p. 146. DOI: 10.
    1007/JHEP05(2014)146. arXiv: 1402.2657 [hep-ph].
    [44] CMS Collaboration. Search for heavy resonances in the W/Z-tagged dijet mass
    spectrum at 13 TeV. CMS Analysis Note CMS-AN-16-235. CERN, 2016.
    [45] Jesse Thaler and Ken Van Tilburg. “Identifying Boosted Objects with Nsubjettiness”.
    In: JHEP 03 (2011), p. 015. DOI: 10.1007/JHEP03(2011)
    015. arXiv: 1011.2268 [hep-ph].
    [46] Jesse Thaler and Ken Van Tilburg. “Maximizing Boosted Top Identification
    by Minimizing N-subjettiness”. In: JHEP 02 (2012), p. 093. DOI: 10.1007/
    JHEP02(2012)093. arXiv: 1108.2701 [hep-ph].
    [47] Iain W. Stewart, Frank J. Tackmann, and Wouter J. Waalewijn. “N-Jettiness:
    An Inclusive Event Shape to Veto Jets”. In: Phys. Rev. Lett. 105 (2010),
    p. 092002. DOI: 10.1103/PhysRevLett.105.092002. arXiv: 1004.
    2489 [hep-ph].
    [48] CMS Collaboration. W/Z-tagging of Jets: Working points and scale factors.
    CMS TWiki r40. CERN, 2016. URL: https://twiki.cern.ch/twiki/
    bin / view / CMS / JetWtagging # Working _ points _ and _ scale _
    factors.
    [49] CMS Collaboration. Identification of double-b quark jets in boosted event topologies.
    CMS Physics Analysis Summary CMS-PAS-BTV-15-002. CERN, 2016.
    URL: https://cds.cern.ch/record/2195743.
    [50] Usage of b Tag Objects for 13 TeV Data with 25ns bunch spacing and
    80xReReco reconstruction. https : / / twiki . cern . ch / twiki /
    bin / viewauth / CMS / BtagRecommendation80XReReco. 2017. URL:
    https : / / twiki . cern . ch / twiki / bin / viewauth / CMS /
    BtagRecommendation80XReReco.
    [51] CMS Collaboration. Search for heavy resonances decaying to a pair of Higgs
    bosons in four b quark final state in proton-proton collisions at sqrt(s)=13 TeV.
    CMS Physics Analysis Summary CMS-PAS-B2G-16-008. CERN, 2016. URL:
    https://cds.cern.ch/record/2202811.
    [52] CMS Collaboration. CMS Luminosity Measurement for the 2016 Data Taking
    Period. CMS Physics Analysis Summary CMS-PAS-LUM-17-001. CERN,
    2017. URL: Inpreparation.
    [53] CMS Collaboration. Jet Energy Resolution. CMS TWiki r56. CERN, 2017.
    URL: https : / / twiki . cern . ch / twiki / bin / view / CMS /
    JetResolution.
    [54] Richard D. Ball et al. “Parton distributions for the LHC Run II”. In: JHEP
    04 (2015), p. 040. DOI: 10.1007/JHEP04(2015)040. arXiv: 1410.8849
    [hep-ph].
    [55] Serguei Chatrchyan et al. “Determination of Jet Energy Calibration and
    Transverse Momentum Resolution in CMS”. In: JINST 6 (2011), P11002.
    DOI: 10 . 1088 / 1748 - 0221 / 6 / 11 / P11002. arXiv: 1107 . 4277
    [physics.ins-det].
    [56] A L Read. “Presentation of search results: the CL s technique”. In: Journal
    of Physics G: Nuclear and Particle Physics 28.10 (2002), p. 2693. URL: http:
    //stacks.iop.org/0954-3899/28/i=10/a=313.
    [57] Nicolas Chanon. Statistical Tools in Collider Experiments. https :
    / / people . phys . ethz . ch / ~pheno / Lectures2012 _
    StatisticalTools / slides / Chanon5 . pdf. 2012. URL: https :
    / / people . phys . ethz . ch / ~pheno / Lectures2012 _
    StatisticalTools/slides/Chanon5.pdf.
    [58] CMS Collaboration. Documentation of the RooStats-based statistics tools for
    Higgs PAG. https : / / twiki . cern . ch / twiki / bin / view / CMS /
    SWGuideHiggsAnalysisCombinedLimit.

    QR CODE
    :::