| 研究生: |
林園景 Lin Yuan Jing |
|---|---|
| 論文名稱: |
真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用 |
| 指導教授: | 曹嘉文 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 多孔矽 、質譜分析 、表面輔助雷射脫附游離法 |
| 外文關鍵詞: | porous silicon, mass spectrometry, SALDI |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
質譜分析是檢測蛋白質與胜肽樣本的重要工具,應用在許多生物醫學、細胞代謝檢測分析上,如今質譜檢測快速發展,檢測技術朝向以無機質的固態材料為基材,稱之為表面輔助雷射脫附游離法(Surface-assisted Laser Desorption Ionization , SALDI),而本研究使用金屬輔助蝕刻製作出奈米層狀矽結構 (nanostructured silicon , nSi),此結構具有高的表面積可吸收紫外光,檢測分析上具有高靈敏度且不受基質干擾。
本研究將奈米矽晶片放置於不同環境下,觀察質譜訊號與接觸角的變化,發現放置於真空與氮氣環境下能保持質譜性能與維持表面疏水性。另外提出利用真空加熱奈米矽晶片的處理方式,不僅能提升晶片表面疏水性,還可提高質譜晶片檢測的靈敏度,檢測濃度10-6M的des-Arg9 Breakinin樣本可提升六倍的質譜訊號,且樣本檢測極限達到從10-7M 提升至10-10M,並且可消除低質量區域景雜訊的干擾,有利於小分子量的樣本分析。
從真空加熱實驗中探討DIOS的機制,由螢光吸附結果得知,真空加熱後的晶片樣本吸附方式較為不同,推理出加熱後的模型,說明表面分析物經由吸收更多熱能達到脫附。另外發現表面經由空氣生成的氧化物對於質譜訊號並不會造成負面影響,且推測與目前學者所提出的離子源Si-OH為同一物質,並利用二次沉積方式將金粒子覆蓋於表面,輔助證明表面離子源。
Mass spectrometry (MS) is an important instrument for the detection of protein and peptide samples which have been widely used in biomedical and cytology fields. Recent trends of mass spectrometry focus on developing solid inorganic materials called Surface-assisted Laser Desorption Ionization, SALDI. In this study we use metal-assisted chemical etching process to fabricate nanostructured silicon. This nanostructure has high surface area which can absorb UV light during MS analysis. The MS analysis exhibit high sensitivity and without matrix interference performance.
In this study, we investigate nanostructured silicon chip storing desorption/ionization efficiency in various environments. We found MS performance and surface hydrophobic are well preserved under vacuum and nitrogen conditions. We also propose nanostructured silicon chips storage using a vacuum heat treatment. The hydrophobicity of the wafer surface can not only enhanced, but the MS detection sensitivity can also improve. We detect 10-6 M des-Arg9 bradykinin can enhance six times and detection limit enhanced to10-7 M to 10-10 M.
[1] M. Yamashita, and J. B. Fenn, “Negative ion production with the electrospray ion source,” The Journal of Physical Chemistry, vol. 88, no. 20, pp. 4671-4675, 1984/09/01, 1984.
[2] K. Tanaka, “Protein and Polymer Analyses up to m/z 100 000 by Laser Ionization Time-of- flight Mass Spectrometry,” 1987.
[3] M. Merchant, and S. R. Weinberger, “Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry,” Electrophoresis, vol. 21, no. 6, pp. 1164-1177, Apr, 2000.
[4] T. W. Hutchens, and T. T. Yip, “New Desorption Strategies for the Mass-Spectrometric Analysis of Macromolecules,” Rapid Communications in Mass Spectrometry, vol. 7, no. 7, pp. 576-580, Jul, 1993.
[5] M. Ndao et al., “Is SELDI-TOF a valid tool for diagnostic biomarkers?,” Trends Parasitol, vol. 26, no. 12, pp. 561-7, Dec, 2010.
[6] J. Sunner, E. Dratz, and Y. C. Chen, “Graphite Surface Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry of Peptides and Proteins from Liquid Solutions,” Analytical Chemistry, vol. 67, no. 23, pp. 4335-4342, Dec 1, 1995.
[7] J. Wei, J. M. Buriak, and G. Siuzdak, “Desorption-ionization mass spectrometry on porous silicon,” Nature, vol. 399, no. 6733, pp. 243-246, May 20, 1999.
[8] R. Nayak, and D. R. Knapp, “Effects of thin-film structural parameters on laser desorption/ionization from porous alumina,” Analytical Chemistry, vol. 79, no. 13, pp. 4950-4956, Jul 1, 2007.
[9] N. F. Hsu et al., “Desorption ionization of biomolecules on metals,” Analytical Chemistry, vol. 80, no. 13, pp. 5203-5210, Jul 1, 2008.
[10] S. Nitta et al., “Desorption/Ionization Efficiency of Common Amino Acids in Surface-Assisted Laser Desorption/Ionization Mass Spectrometry (SALDI-MS) with Nanostructured Platinum,” Journal of Physical Chemistry C, vol. 117, no. 1, pp. 238-245, Jan 10, 2013.
[11] J. I. Kim et al., “Top-down synthesized TiO2 nanowires as a solid matrix for surface-assisted laser desorption/ionization time-of-flight (SALDI-TOF) mass spectrometry,” Analytica Chimica Acta, vol. 836, pp. 53-60, Jul 11, 2014.
[12] C. Lopez de Laorden et al., “Nanostructured indium tin oxide slides for small-molecule profiling and imaging mass spectrometry of metabolites by surface-assisted laser desorption ionization MS,” Anal Chem, vol. 87, no. 1, pp. 431-40, Jan 6, 2015.
[13] X. W. Geng et al., “Fabrication of antireflective layers on silicon using metal-assisted chemical etching with in situ deposition of silver nanoparticle catalysts,” Solar Energy Materials and Solar Cells, vol. 103, pp. 98-107, Aug, 2012.
[14] X. L. Li, “Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics,” Current Opinion in Solid State & Materials Science, vol. 16, no. 2, pp. 71-81, Apr, 2012.
[15] K. Q. Peng et al., “High-performance silicon nanohole solar cells,” J Am Chem Soc, vol. 132, no. 20, pp. 6872-3, May 26, 2010.
[16] K. Q. Peng et al., “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small, vol. 1, no. 11, pp. 1062-1067, Nov, 2005.
[17] Z. X. Shen et al., “Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry,” Analytical Chemistry, vol. 73, no. 3, pp. 612-619, Feb 1, 2001.
[18] A. del Campo, C. Greiner, and E. Arzt, “Contact shape controls adhesion of bioinspired fibrillar surfaces,” Langmuir, vol. 23, no. 20, pp. 10235-10243, Sep 25, 2007.
[19] S. Buzzi et al., “Metal direct nanoimprinting for photonics,” Microelectronic Engineering, vol. 85, no. 2, pp. 419-424, Feb, 2008.
[20] Y. Cui et al., “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, vol. 293, no. 5533, pp. 1289-1292, Aug 17, 2001.
[21] V. Vamvakaki, and N. A. Chaniotakis, “DNA stabilization and hybridization detection on porous silicon surface by EIS and total reflection FT-IR spectroscopy,” Electroanalysis, vol. 20, no. 17, pp. 1845-1850, Sep, 2008.
[22] C. K. Chan et al., “High-performance lithium battery anodes using silicon nanowires,” Nature Nanotechnology, vol. 3, no. 1, pp. 31-35, Jan, 2008.
[23] K. Q. Peng et al., “Silicon nanowires for rechargeable lithium-ion battery anodes,” Applied Physics Letters, vol. 93, no. 3, Jul 21, 2008.
[24] D. Brodoceanu et al., “Dense arrays of uniform submicron pores in silicon and their applications,” ACS Appl Mater Interfaces, vol. 7, no. 2, pp. 1160-9, Jan 21, 2015.
[25] S. A. Trauger et al., “High sensitivity and analyte capture with desorption/ionization mass spectrometry on silylated porous silicon,” Analytical Chemistry, vol. 76, no. 15, pp. 4484-4489, Aug 1, 2004.
[26] R. D. Lowe et al., “Combined Immunocapture and Laser Desorption/Ionization Mass Spectrometry on Porous Silicon,” Analytical Chemistry, vol. 82, no. 10, pp. 4201-4208, May 15, 2010.
[27] J. Li, X. K. Hu, and R. H. Lipson, “On-chip Enrichment and Analysis of Peptide Subsets Using a Maleimide-functionalized Fluorous Affinity Biochip and Nanostructure Initiator Mass Spectrometry,” Analytical Chemistry, vol. 85, no. 11, pp. 5499-5505, Jun 4, 2013.
[28] M. Ronci et al., “Mass Spectrometry Imaging on Porous Silicon: Investigating the Distribution of Bioactives in Marine Mollusc Tissues,” Analytical Chemistry, vol. 84, no. 21, pp. 8996-9001, Nov 6, 2012.
[29] E. P. Go et al., “Desorption/ionization on silicon time-of-flight/time-of-flight mass spectrometry,” Analytical Chemistry, vol. 75, no. 10, pp. 2504-2506, May 15, 2003.
[30] E. P. Go et al., “Desorption/ionization on silicon nanowires,” Analytical Chemistry, vol. 77, no. 6, pp. 1641-1646, Mar 15, 2005.
[31] N. H. Finkel et al., “Ordered silicon nanocavity arrays in surface-assisted desorption/ionization mass spectrometry,” Analytical Chemistry, vol. 77, no. 4, pp. 1088-1095, Feb 15, 2005.
[32] J. D. Cuiffi et al., “Desorption-ionization mass spectrometry using deposited nanostructured silicon films,” Analytical Chemistry, vol. 73, no. 6, pp. 1292-1295, Mar 15, 2001.
[33] S. Alimpiev et al., “On the mechanism of laser-induced desorption-ionization of organic compounds from etched silicon and carbon surfaces,” Journal of Chemical Physics, vol. 115, no. 4, pp. 1891-1901, Jul 22, 2001.
[34] Q. C. Zhang et al., “Matrix-assisted laser desorption/ionization mass spectrometry using porous silicon and silica gel as matrix,” Rapid Communications in Mass Spectrometry, vol. 15, no. 3, pp. 217-223, 2001.
[35] C. W. Tsao et al., “Dynamic electrowetting on nanofilament silicon for matrix-free laser desorption/ionization mass spectrometry,” Analytical Chemistry, vol. 80, no. 8, pp. 2973-2981, Apr 15, 2008.
[36] Z. P. Huang et al., “Metal-Assisted Chemical Etching of Silicon: A Review,” Advanced Materials, vol. 23, no. 2, pp. 285-308, Jan 11, 2011.
[37] C. W. Tsao, Z. J. Yang, and C. W. Chung, “Preparation of nanostructured silicon surface for mass spectrometry analysis by an all-wet fabrication process using electroless metal deposition and metal assisted etching,” International Journal of Mass Spectrometry, vol. 321, pp. 8-13, May 15, 2012.
[38] W. Y. Chen et al., “Fabrication of nanostructured silicon by metal-assisted etching and its effects on matrix-free laser desorption/ionization mass spectrometry,” Analytica Chimica Acta, vol. 687, no. 2, pp. 97-104, Feb 21, 2011.
[39] W. Corporation, “MASSPREP DIOS-TARGET PLATES.”
[40] R. A. Kruse et al., “Experimental factors controlling analyte ion generation in laser desorption/ionization mass spectrometry on porous silicon,” Analytical Chemistry, vol. 73, no. 15, pp. 3639-3645, Aug 1, 2001.
[41] A. Gorecka-Drzazga et al., “Desorption/ionization mass spectrometry on porous silicon dioxide,” Sensors and Actuators B-Chemical, vol. 103, no. 1-2, pp. 206-212, Sep 29, 2004.
[42] S. Vaidyanathan et al., “Laser desorption/ionization mass spectrometry on porous silicon for metabolome analyses: influence of surface oxidation,” Rapid Communications in Mass Spectrometry, vol. 21, no. 13, pp. 2157-2166, 2007.
[43] G. H. Luo et al., “Surface modification and laser pulse length effects on internal energy transfer in DIOS,” Journal of Physical Chemistry B, vol. 109, no. 51, pp. 24450-24456, Dec 29, 2005.
[44] S. H. Kim et al., “Commercial Silicon-on-Insulator (SOI) Wafers as a Versatile Substrate for Laser Desorption/Ionization Mass Spectrometry,” Journal of the American Society for Mass Spectrometry, vol. 24, no. 1, pp. 167-170, Jan, 2013.
[45] J. Li, and R. H. Lipson, “Insights into Desorption Ionization on Silicon (DIOS),” Journal of Physical Chemistry C, vol. 117, no. 51, pp. 27114-27119, Dec 26, 2013.
[46] S. Alimpiev et al., “On the role of defects and surface chemistry for surface-assisted laser desorption ionization from silicon,” Journal of Chemical Physics, vol. 128, no. 1, Jan 7, 2008.
[47] Q. Liu, and L. He, “Quantitative study of solvent and surface effects on analyte ionization in desorption ionization on silicon (DIOS) mass spectrometry,” Journal of the American Society for Mass Spectrometry, vol. 19, no. 1, pp. 8-13, Jan, 2008.
[48] S. N. Zhabin et al., “On the role of laser irradiation in the processes of laser desorption/ionisation from silicon surfaces,” Quantum Electronics, vol. 41, no. 9, pp. 835-842, 2011.
[49] V. Jokinen et al., “Surface Assisted Laser Desorption/Ionization on Two-Layered Amorphous Silicon Coated Hybrid Nanostructures,” Journal of the American Society for Mass Spectrometry, vol. 20, no. 9, pp. 1723-1730, Sep, 2009.
[50] C. W. Tsao et al., “Nanostructured silicon surface modifications for as a selective matrix-free laser desorption/ionization mass spectrometry,” Analyst, vol. 137, no. 11, pp. 2643-2650, 2012.