跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蘇千豪
Chien-Hao Su
論文名稱: H∞取樣模糊系統控制與觀測定理
指導教授: 羅吉昌
Ji-Chang Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 67
中文關鍵詞: 線性矩陣不等式即時觀測器平行分散式補償器模糊模型
外文關鍵詞: State estimation, current, Hybrid systems, Sampled-data systems, H_infinite, LMI, State feedback control, Takagi-Sugeno
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是研究狀態回饋控制以及狀態估測於取樣模糊系統(sampled-data fuzzy systems) , 本論文將分兩部分來進行討論 ,
    第一部份先推導滿足Lyapunov穩定的檢測條件 , 第二部分考慮干擾的影響 , 推導出滿足H∞穩定的檢測條件 。


    論文摘要 I 致謝 III 圖目 VII 第一章 簡介 1 1.1 文獻回顧 1 1.2 研究動機 2 1.3 論文結構 2 1.4 符號標記 3 1.5 預備定理 3 第二章 系統架構與穩定條件 5 2.1 系統架構 5 2.2 跳躍系統 6 2.3 穩定條件 7 第三章 控制器與觀測器的設計 9 3.1 狀態回饋控制器 9 3.2 即時觀測器 12 第四章 電腦模擬 17 4.1控制例子 17 4.1.1 數學架構 18 4.1.2 求解 19 4.2 觀測例子 27 4.1.1 數學架構 27 4.1.2 求解 28 4.3 解題步驟 32 第五章 系統架構與H∞定理 33 5.1 H∞定理 33 5.2 數學模型 34 5.3 檢測條件 35 第六章 控制器與觀測器的設計 38 6.1 系統架構 38 6.2 狀態回饋控制器 38 6.3 即時觀測器 43 第七章 電腦模擬 50 7.1 倒單擺例子 50 7.1.1 數學架構 51 7.1.2 求解 53 7.2 觀測例子 57 7.2.1 數學架構 57 7.2.2 求解 58 第八章 總結與未來研究方向 63 8.1 總結 63 8.2 未來研究方向 64 參考文獻 65

    [1] P. Khargonekar and N. Sivashankar, “H2 optimal control for sampled-data systems,”
    Syst. & Contr. Lett., vol. 17, pp. 425–436, 1991.
    [2] B. Bamieh and J. Pearson, “The H2 problem for sampled-data systems,” Syst. &
    Contr. Lett., no. 19, pp. 1–12, 1992.
    [3] R. Ravi, K. Nagpal, and P. Khargonekar, “H∞ of linear time-varying systems:
    A state-space approach,” SIAM J. Control and Optimization, vol. 29, no. 6, pp.
    1394–1413, Nov. 1991.
    [4] D. Limebeer, B. Anderson, R. Khargonekar, and M. Green, “A game theoretic
    approach to H∞ for time-varying systems,” SIAM J. Control and Optimization,
    vol. 30, no. 2, pp. 262–283, Mar. 1992.
    [5] N. Sivashankar and P. Khargonekar, “Robust stability and performance analysis of
    sampled-data systems,” IEEE Trans. Automat. Contr., vol. 38, no. 1, pp. 58–1150,
    Jan. 1993.
    [6] ——, “Characterization of the L2-induced norm for linear systems with jumps
    with applications to sampled-data systems,” SIAM J. Control and Optimization,
    vol. 32, no. 4, pp. 1128–1150, July 1994.
    [7] H. Toivonen and M. Sagfors, “The sampled-date H∞ problem: a unified framework
    for discretization-based method and Riccati equation solution,” Int. J. Contr.,
    vol. 66, no. 2, pp. 289–309, 1997.
    [8] W. Sun, K. Nagpal, and P. Khargonekar, “H∞ control and filtering for sampleddata
    systems,” IEEE Trans. Automat. Contr., vol. 38, no. 8, pp. 1162–1175, 1993.
    [9] A. Ichikawa and H. Katayama, “H∞ control for a general jump systems with
    application to sampled-data systems,” Kobe, JP, pp. 446–451, 1996.
    [10] ——, “H2 and H∞ control for jump systems with application to sampled-data
    systems,” Int’l J. of Systems Science, vol. 29, no. 8, pp. 829–849, 1998.
    [11] S. Nguang and P. Shi, “On designing filters for uncertain sampled-data nonlinear
    systems,” Syst. & Contr. Lett., vol. 41, pp. 305–316, 2000.
    [12] Y. Joo, L. Shieh, and G. Chen, “Hybrid state-space fuzzy model-based controller
    with dual-rate sampling for digital control of chaotic systems,” IEEE Trans. Fuzzy
    Syst., vol. 7, no. 4, pp. 394–408, Aug. 1999.
    [13] W. Chang, J. Park, Y. Joo, , and G. Chen, “Design of sampled-data fuzzy-modelbased
    control systems by using intelligent digital redesign,” IEEE Trans. Circuits
    and Syst. I: Fundamental Theory and Applications, vol. 49, no. 4, pp. 509–517,
    Apr. 2002.
    [14] L. Hu, H. Shao, and Y. Sun, “Robust sampled-data control for fuzzy uncertain
    systems,” in Proc. of American Conf. Conf., vol. 1, Chicago, IL, 2000, pp. 1934–
    1938.
    [15] M. Nishikawa, H. Katayama, J. Yoneyama, and A. Ichikawa, “Design of output
    feedback controllers for sampled-data fuzzy systems,” Int’l J. of Systems Science,
    vol. 31, no. 4, pp. 439–448, 2000.
    [16] S. Nguang and P. Shi, “Fuzzy H∞ output feedback control of nonlinear systems
    under sampled measurement,” in Proc. of the 40th IEEE Conf. on Deci. and
    Contr., vol. 1, Orlando, FL, 2001, pp. 4370–4375.
    [17] H. Katayama and A. Ichikawa, “H∞ control for sampled-data fuzzy systems,” in
    Proc. of the American Control Conference, Denver, CO, 2003, pp. 4237–4242.
    [18] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications
    to modeling and control,” IEEE Trans. Syst., Man, Cybern., vol. 15, no. 1, pp.
    116–132, Jan. 1985.
    [19] H. Wang, K. Tanaka, and M. Griffin, “An approach to fuzzy control of nonlinear
    systems: stability and design issues,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp.
    14–23, Feb. 1996.
    [20] T. Taniguchi, K. Tanaka, H. Ohatake, and H. Wang, “Model construction, rule
    reduction and robust compensation for generalized form of Takagi-Sugeno fuzzy
    systems,” IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 525–538, Aug. 2001.
    [21] J. Lo and M. Lin, “Robust H∞ nonlinear control via fuzzy static output feedback,”
    IEEE Trans. Circuits Syst. I: Fundamental Theory and Appl., vol. 50, no. 11, pp.
    1494–1502, Nov. 2003.
    [22] W. Sun, K. Nagpal, P. Khargonekar, and K. Poolla, “Digital control systems: H∞
    controller design with a zero-order hold function,” in Proceedings of the 31st IEEE
    Conf. on Decision & Control., Tucson, AR, 1992, pp. 475–480.
    [23] K. Tanaka and H. Wang, Fuzzy Control Systems Design: A Linear Matrix Inequality
    Approach. New York, NY: John Wiley & Sons, Inc., 2001.
    [24] H.Wang, K. Tanaka, and T. Ikeda, “Fuzzy modeling and control of chaotic systems
    ,” in IEEE Sympo. Circuits Systems, Atlanta, GA, May 1996, pp. 209–212.
    [25] J. Lo and C. Su, “Current Observer for Sampled-Data Fuzzy Systems,” American
    Control Conference, vol. 50, June 2005.

    QR CODE
    :::