跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許景鑫
Chin-Hsing Hsu
論文名稱: 人工智慧運用在醫學領域研究之網路與主題分析
Network and Topic Analysis of the Artificial Intelligence Research in Medicine
指導教授: 沈建文
口試委員:
學位類別: 博士
Doctor
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 75
中文關鍵詞: 網路分析主題分析書目耦合人工智慧共同引用
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 儘管已經廣泛研究了人工智慧(Artificial intelligence, A I)在醫學中的應用,但仍需進行其他相關的全面文獻綜述。這項研究的目的是整合網絡分析和主題分析,以分析醫學領域有關AI的研究發展趨勢。通過使用基於關鍵字的搜尋,從Scopus數據庫中收集了1963–2018年間發表的所有相關文章,以及它們的作者姓名,通訊地址,文章標題,出版年份,關鍵字,引用計數,主題,期刊名稱以及出版物和出版商信息。在這項研究中進行的網絡分析是基於共現,共引和書目耦合分析,並經由網絡可視化顯示。通過確定關鍵字,作者和期刊的結構和它們之間的關係,進行了聚類分析,並利用關聯的強度評估了文獻中的趨勢並確定了研究重點。這項研究還使用主題建模來根據文檔文本發現文檔集中的隱藏主題結構,並揭示文檔集中所有可能的主題以及每個文檔的主題比例。首先,在共現和作者關鍵詞聚類分析中,結果揭示了關聯和方法的發展方向。其次,關於被引論文的作者網絡分析,結果表明相關研究領域的共性可以作為該領域未來研究者的參考學習合作。關於被引文獻資源網絡,結果表明不同的期刊具有相同的特徵並被共同引用,具有指導該領域整體研究的特徵和進展。在書目耦合引用來源網絡中,結果揭示了AI在醫學領域研究的出版趨勢。最後,本研究採用主題建模進行主題分析,結果揭示了6個主要主題的方法和研究領域的趨勢,可以為將來的研究提供重要參考。


    Although the application of artificial intelligence (AI) in medicine has been researched extensively, additional relevant comprehensive literature reviews are warranted. The objective of this study is to integrate network analysis and topic analysis to analyze the development trends in research regarding AI in the medicine domain. By using keyword-based search, all relevant articles published over 1963–2018 were collected from the Scopus database, and their author names, correspondence addresses, article titles, publishing years, keywords, citation count, themes, journal names, and publication and publisher information were extracted. The network analysis conducted in this study was based on co-occurrence, co-citation, and bibliographic coupling analysis and was demonstrated through network visualization. By determining the structure of and relationships between keywords, authors, and journal, cluster analysis was conducted, and the strength of associations was employed to evaluate the trend in the literature and define the research focal points. This study also employed topic modeling to discover hidden topic structures in document sets on the basis of the texts of the documents and to reveal all possible topics in a document set as well as the proportions of the topics of each document. First, In the co-occurrence and author keyword cluster analysis, the results revealed the development direction of association and methods. Second, regarding the co-citation cited authors network analysis, the results revealed the commonality of related research areas can be used as a reference learning cooperation for future researchers in this field. With respect to the co-citation cited sources network, the results revealed different journals have the same characteristics and are co-cited, which has the characteristics and progress of guiding the overall research in this field. In the bibliographic coupling cited sources network, the result revealed the publication trend of studies in the field of AI in medicine. Finally, this study employed topic modeling for topic analysis, the results revealed the methods and research field trends on 6 major topics can provide important references may serve for future research.

    頁次 中文摘要............................................................................................................i Abstract..............................................................................................................ii 致謝...................................................................................................................iii 目錄...................................................................................................................iv 圖目錄...............................................................................................................vi 表目錄...............................................................................................................vii 第一章 緒論....................................................................................................1 1-1 研究背景和動機.....................................................................................1 1-2 研究目的.................................................................................................4 第二章 文獻探討............................................................................................6 2-1 人工智慧運用在醫學領域.....................................................................6 2-1-1 2000-2009年.........................................................................................6 2-1-2 2010-2015年.........................................................................................7 2-1-3 2016-2019年........................................................................................10 2-2 主題分析................................................................................................12 第三章 研究方法...........................................................................................15 3-1 資料蒐集...............................................................................................15 3-2 分析方法...............................................................................................17 3-2-1 網絡分析..............................................................................................17 3-2-2 主題分析..............................................................................................20 第四章 研究結果...........................................................................................29 4-1 網絡分析.................................................................................................29 4-1-1 共同作者與國家聚類............................................................................29 4-1-2 人工智慧運用在醫學的前20大發表多產國家..................................30 4-1-3 醫學發表文章運用人工智慧的共同作者密度....................................31 4-1-4 醫學發表文章運用人工智慧的關鍵字共現網路................................32 4-1-5 人工智慧運用在醫學發表文章的前15大關鍵字..............................34 4-1-6 作者與被共引聚類................................................................................35 4-1-7 人工智慧運用在醫學發表文章的前15大作者..................................36 4-1-8 來源期刊與共引聚類...........................................................................37 4-1-9 人工智慧運用在醫學發表文章的前15大來源與共引......................38 4-1-10書目對與期刊來源分析.......................................................................39 4-1-11人工智慧運用在醫學發表文章的前15大期刊與共引.....................41 4-2 主題分析.................................................................................................41 4-2-1 主題1.....................................................................................................43 4-2-2 主題2.....................................................................................................44 4-2-3 主題3.....................................................................................................45 4-2-4 主題4.....................................................................................................46 4-2-5 主題5.....................................................................................................47 4-2-6 主題6.....................................................................................................48 第五章 結論...................................................................................................51 5-1 研究結論...................................................................................................51 5-2 研究限制...................................................................................................53 參考文獻...........................................................................................................54

    Adlassnig, K.-P., Blacky, A., & Koller, W. (2009). Artificial-intelligence-based
    hospital-acquired infection control. Stud Health Technol Inform, 149, 103-110.
    Arnold, C. W., El-Saden, S. M., Bui, A. A., & Taira, R. (2010). Clinical case-based
    retrieval using latent topic analysis. Paper presented at the AMIA annual
    symposium proceedings American Medical Informatics Association, p26.
    Asl, B. M., Setarehdan, S. K., & Mohebbi, M. J. A. (2008). Support vector
    machine-based arrhythmia classification using reduced features of heart rate
    variability signal. Artificial intelligence in medicine, 44(1), 51-64.
    Awwalu, J., Garba, A. G., Ghazvini, A., & Atuah, R. (2015). Artificial intelligence in
    personalized medicine application of AI algorithms in solving personalized
    medicine problems. International Journal of Computer Theory and Engineering,
    7(6), 439.
    Bartlett, R. (2006). Artificial intelligence in sports biomechanics: new dawn or false
    hope? Journal of sports science & medicine, 5(4), 474-479.
    Bazin, P.-L., & Pham, D. L. (2008). Homeomorphic brain image segmentation with
    topological and statistical atlases. Medical image analysis, 12(5), 616-625.
    Bellman, R. E. (1978). An Introduction to Artificial Intelligence: Can Computers
    Think? Boyd & Fraser Publishing Company.
    Bockaert, J., Fagni, L., Dumuis, A., & Marin. (2004). GPCR interacting proteins (GIP).
    Pharmacology, 103(3), 203-221.
    Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the
    social sciences. science, 323(5916), 892-895.
    Borgman, C. L., & Furner, J. (2002). Scholarly communication and bibliometrics.
    Annual review of information science and technology, 36(1), 2-72.
    Boyack, K. W., & Klavans, R. (2010). Co‐citation analysis, bibliographic coupling, and
    direct citation: Which citation approach represents the research front most
    accurately?. Journal of the American Society for information Science and
    Technology, 61(12), 2389-2404.
    Buzurovic, I., Podder, T. K., & Yu, Y. (2010). Prediction control for brachytherapy
    robotic system. Journal of Robotics, 2010.
    Cao, Q., Duan, W., & Gan, Q. (2011). Exploring determinants of voting for the
    “helpfulness” of online user reviews: A text mining approach. Decision Support
    Systems, 50(2), 511-521.
    Catto, J. W., Abbod, M. F., Wild, P. J., Linkens, D. A., Pilarsky, C., Rehman, I., Stoehr,
    R. (2010). The application of artificial intelligence to microarray data:
    identification of a novel gene signature to identify bladder cancer progression.
    European urology, 57(3), 398-406.
    Cheein, F. A. A., Lopez, N., Soria, C. M., Di Sciascio, F. A., Pereira, F. L., & Carelli,
    R.(2010). SLAM algorithm applied to robotics assistance for navigation in
    unknown environments. Journal of neuroengineering and rehabilitation, 7(1), 10.
    Chakraborty, G., Pagolu, M., & Garla, S. (2014). Text mining and analysis: practical
    methods, examples, and case studies using SAS: SAS Institute.
    Cheong, M. C. S. (2018). Artificial Intelligence in Healthcare. Journal of Biomedical &
    Laboratory Sciences, 30(2), 33-37.
    Cho, I., Kim, J., Kim, J. H., Kim, H. Y., & Kim, Y. (2010). Design and implementation
    of a standards-based interoperable clinical decision support architecture in the
    context of the Korean EHR. International journal of medical informatics, 79(9),
    611-622.
    Cho, K. W., Kim, S. Y., & Woo, Y. W. (2019). Analysis of women’s health online news
    articles using topic modeling. Osong Public Health and Research Perspectives,
    10(3), 158.
    Chuang, K.-Y., Chuang, Y.-C., Ho, M., & Ho, Y.-S. (2011). Bibliometric analysis of
    public health research in Africa: the overall trend and regional comparisons. South
    African Journal of Science, 107, 54-59.
    Chung, J., & Tsay, M.-Y. (2017). A bibliometric analysis of the literature on open
    access in scopus. Qualitative Quantitative Methods in Libraries, 4(4), 821-841.
    Chung-Yen Yu, J.-C. S. (2017). The study of bibliometrics on electronic resources
    data- A case syudy of cancer research. [The study of bibliometrics on electronic
    resources data - a case study of cancer research]. Journal of Technology, 32(1),
    61-89.
    Dang, J., Hedayati, A., Hampel, K., & Toklu, C. J. J. o. b. i. (2008). An ontological
    knowledge framework for adaptive medical workflow. 41(5), 829-836.
    Datta, S., Sajja, B. R., He, R., Gupta, R. K., Wolinsky, J. S., & Narayana, P. A. (2007).
    Segmentation of gadolinium‐enhanced lesions on MRI in multiple sclerosis.
    Journal of Magnetic Resonance Imaging, 25(5), 932-937.
    Deepa, S., & Devi, B. A. (2011). A survey on artificial intelligence approaches for
    medical image classification. Indian Journal of Science and Technology, 4(11),
    1583-1595.
    Fogel, A. L., & Kvedar, J. C. (2018). Artificial intelligence powers digital medicine.
    npj Digital Medicine, 1(1), 5.
    Ghezzi, T. L., & Corleta, O. C. (2016). 30 years of robotic surgery. World journal of
    surgery, 40(10), 2550-2557.
    Goodwin, L., VanDyne, M., Lin, S., & Talbert, S. (2003). Data mining issues and
    opportunities for building nursing knowledge. Journal of Biomedical Informatics,
    36(4), 379-388. doi:https://doi.org/10.1016/j.jbi.2003.09.020
    Gu, D.-x., Liang, C.-y., Li, X.-g., Yang, S.-l., & Zhang, P. (2010). Intelligent technique
    for knowledge reuse of dental medical records based on case-based reasoning. J
    Med Syst, 34(2), 213-222.
    Gu, D., Li, J., Li, X., & Liang, C. (2017). Visualizing the knowledge structure and
    evolution of big data research in healthcare informatics. International journal of
    medical informatics, 98, 22-32.
    Guerreiro, J., Rita, P., & Trigueiros, D. J. J. o. B. E. (2016). A text mining-based review
    of cause-related marketing literature. 139(1), 111-128.
    Guo, R., & Shi, H. (2017). Confidentiality-Preserving Personal Health Records in
    Tele-Healthcare System Using Authenticated Certificateless Encryption. Network
    Security, 19(6), 995-1004.
    Gupta, R. K., & Kumari, R. (2017). Artificial intelligence in public health:
    Opportunities and challenges. JK Science, 19(4), 191-192.
    Hamid, S. (2016). The opportunities and risks of artificial intelligence in medicine and
    healthcare.
    Hanson, C. W., & Marshall, B. E. (2001). Artificial intelligence applications in the
    intensive care unit. Critical care medicine, 29(2), 427-435.
    Helm, E. J., Silva, C. T., Roberts, H. C., Manson, D., Seed, M. T., Amaral, J. G., &
    Babyn, P. S. (2009). Computer-aided detection for the identification of pulmonary
    nodules in pediatric oncology patients: initial experience. Pediatric radiology,
    39(7), 685-693.
    Hirose, T., Nitta, N., Shiraishi, J., Nagatani, Y., Takahashi, M., & Murata, K. (2008).
    Evaluation of computer-aided diagnosis (CAD) software for the detection of lung
    nodules on multidetector row computed tomography (MDCT): JAFROC study for
    the improvement in radiologists' diagnostic accuracy. Academic radiology, 15(12),
    1505-1512.
    Horwitz, C., Mueller, M., Wiley, D., Tentler, A., Bocko, M., Chen, L., . . . Pentland, A.
    (2008). Is home health technology adequate for proactive self-care? Methods of
    Information in Medicine, 47(01), 58-62.
    Hu, C.-P., Hu, J.-M., Gao, Y., & Zhang, Y.-K. (2011). A journal co-citation analysis of
    library and information science in China. Scientometrics, 86(3), 657-670.
    Huang, C.-R., Chung, P.-C., Sheu, B.-S., & Kuo, H.-J. J. I. T. o. I. T. i. B. (2008).
    Helicobacter pylori-related gastric histology classification using
    support-vector-machine-based feature selection. IEEE Transactions on
    Information Technology in Biomedicine, 12(4), 523-531.
    Huang, M. H., Chiang, L. Y., & Chen, D. Z. (2003). Constructing a patent citation map
    using bibliographic coupling: A study of Taiwan's high-tech companies.
    Scientometrics, 58(3), 489-506.
    Ishak, W. H. W., & Siraj, F. (2002). Artificial intelligence in medical application: An
    exploration. Health Informatics Europe Journal, 16.
    Jadhavar, A., Sirolikar, P., & Chakraborty, G. (2016). Analysis of IMDB Reviews For
    Movies And Television Series using SAS Enterprise Miner and SAS Sentiment
    Analysis Studio.
    Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent
    Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey.
    Multimedia Tools Applications, 78(11), 15169-15211.
    Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y. (2017). Artificial
    intelligence in healthcare: past, present and future. Stroke and Vascular
    Neurology,2(4), 230-243. doi:10.1136/svn-2017-000101
    Juergens, K. U., Seifarth, H., Range, F., Wienbeck, S., Wenker, M., Heindel, W., &
    Fischbach, R. (2008). Automated threshold-based 3D segmentation versus
    short-axis planimetry for assessment of global left ventricular function with
    dual-source MDCT. American journal of roentgenology, 190(2), 308-314.
    Kang, J. M., Yoo, T., & Kim, H. C. (2006). A wrist-worn integrated health monitoring
    instrument with a tele-reporting device for telemedicine and telecare. Transactions
    on Instrumentation Measurement 55(5), 1655-1661.
    Kasai, S., Li, F., Shiraishi, J., & Doi, K. (2008). Usefulness of computer-aided
    diagnosis schemes for vertebral fractures and lung nodules on chest radiographs.
    American Journal of Roentgenology, 191(1), 260-265.
    Keil, S., Plumhans, C., Nagy, I. A., Schiffl, K., Soza, G., Behrendt, F. F., Das, M.
    (2010). Dose reduction for semi-automated volumetry of hepatic metastasis in
    MDCT studies. Investigative radiology, 45(2), 77-81.
    Klein, O., Kanter, F., Kulbe, H., Jank, P., Denkert, C., Nebrich, G., Sehouli, J. J. P. C.
    A.(2019). MALDI‐Imaging for Classification of Epithelial Ovarian Cancer
    Histotypes from a Tissue Microarray Using Machine Learning Methods. 13(1),
    1700181.
    Knapp S.(2006). Artificial intelligence: past, present, and future. Vox of Dartmouth
    Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I.
    (2015). Machine learning applications in cancer prognosis and prediction.
    Computational and structural biotechnology journal, 13, 8-17.
    Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial
    Intelligence in Precision Cardiovascular Medicine. Journal of the American
    College of Cardiology, 69(21), 2657-2664. doi:10.1016/j.jacc.2017.03.571
    Kwon, H., Kim, J., & Park, Y. (2017). Applying LSA text mining technique in
    envisioning social impacts of emerging technologies: The case of drone
    technology. Technovation, 60, 15-28.
    Labovitz, D. L., Shafner, L., Reyes Gil, M., Virmani, D., & Hanina, A. (2017). Using
    artificial intelligence to reduce the risk of nonadherence in patients on
    anticoagulation therapy. Stroke, 48(5), 1416-1419.
    Lee, H. J., Hwang, S. I., Han, S.-m., Park, S. H., Kim, S. H., Cho, J. Y., Choe, G.
    (2010). Image-based clinical decision support for transrectal ultrasound in the
    diagnosis of prostate cancer: comparison of multiple logistic regression, artificial
    neural network, and support vector machine. European radiology, 20(6),
    1476-1484.
    Lin, H.-M. (2017). Bibliometrics and Visualization Analysis of Long-term Care.
    Lipton, Z. C., Kale, D. C., Elkan, C., & Wetzel, R. (2015). Learning to diagnose with
    LSTM recurrent neural networks. arXiv preprint arXiv:1511.03677.
    Liu, X., Zhan, F. B., Hong, S., Niu, B., & Liu, Y. J. S. (2012). A bibliometric study of
    earthquake research: 1900–2010. 92(3), 747-765.
    Luke, D. A., & Harris, J. K. (2007). Network analysis in public health: history,
    methods, and applications. J Annu. Rev. Public Health, 28, 69-93.
    Maron, M. (1963). Artificial intelligence and brain mechanisms.
    McCarthy, J. (2005). The future of AI--a manifesto. AI Magazine, 26(4), 39-39.
    McDermott, J. (1980). Principles of artificial intelligence: Nils J. Nilsson, Tioga
    Publishing Co., Palo Alto, CA, 1980, 476 pages, Artificial Intelligence, 15(1),
    127-131. doi:https://doi.org/10.1016/0004-3702(80)90026-0
    Mimno, D., & McCallum, A. (2007). Mining a digital library for influential authors. In
    R. Larson, E. Rasmussen, S. Sugimoto, & E. Toms (Eds.), Proceedings of the 7th
    ACM/IEEE-CS Joint Conference on Digital Libraries (pp. 105-106). New York,
    NY: ACM
    Mohd Dom, R., Abdul Kareem, S., Abidin, B., Mazlipah, S., & Norzaidi, M. (2010).
    The use of artificial intelligence to identify people at risk of oral cancer: empirical
    evidence in Malaysian university (Vol. 3).
    Moorthy, K., Munz, Y., Dosis, A., Hernandez, J., Martin, S., Bello, F., Darzi, A. (2004).
    Dexterity enhancement with robotic surgery. Surgical Endoscopy and Other
    Interventional Techniques, 18(5), 790-795.
    Moro, S., Cortez, P., & Rita, P. (2015). Business intelligence in banking: A literature
    analysis from 2002 to 2013 using text mining and latent Dirichlet allocation.
    Expert Systems with Applications, 42(3), 1314-1324.
    Nerur, S. P., Rasheed, A. A., & Natarajan, V. (2008). The intellectual structure of the
    strategic management field: An author co‐citation analysis. Strategic Management
    Journal, 29(3), 319-336.
    Niu, J., Tang, W., Xu, F., Zhou, X., & Song, Y. (2016). Global Research on Artificial
    Intelligence from 1990–2014: Spatially-Explicit Bibliometric Analysis. ISPRS
    International Journal of Geo-Information, 5(5), 66.
    Onan, A., Korukoglu, S., & Bulut, H. (2016). LDA-based Topic Modelling in Text
    Sentiment Classification: An Empirical Analysis. Int. J. Comput. Linguistics
    Appl.,7(1), 101-119.
    Peek, N., Combi, C., Marin, R., & Bellazzi, R. (2015). Thirty years of artificial
    intelligence in medicine (AIME) conferences: A review of research themes.
    Artificial intelligence in medicine, 65(1), 61-73.
    Peleg, M., Shachak, A., Wang, D., & Karnieli, E. (2009). Using multi-perspective
    methodologies to study users’ interactions with the prototype front end of a
    guideline-based decision support system for diabetic foot care. International
    journal of medical informatics, 78(7), 482-493.
    Peng, J.-X., Li, K., & Irwin, G. W. J. (2008). A new Jacobian matrix for optimal
    learning of single-layer neural networks. IEEE transactions on neural networks,
    19(1), 119-129.
    Peng, S. Y., Chuang, Y. C., Kang, T. W., & Tseng, K. H. (2010). Random forest can
    predict 30‐day mortality of spontaneous intracerebral hemorrhage with
    remarkable discrimination. European journal of neurology, 17(7), 945-950.
    Peters, J., Ecabert, O., Meyer, C., Kneser, R., & Weese, J. (2010). Optimizing
    boundary detection via simulated search with applications to multi-modal heart
    segmentation. Medical image analysis, 14(1), 70-84.
    Pineau, J., Montemerlo, M., Pollack, M., Roy, N., & Thrun, S. (2003). Towards robotic
    assistants in nursing homes: Challenges and results. Robotics and autonomous
    systems, 42(3-4), 271-281.
    Pinto, M., Pulgarín, A., & Escalona, M. I. (2014). Viewing information literacy
    concepts: a comparison of two branches of knowledge. Scientometrics, 98(3),
    2311-2329.
    Prastawa, M., Bullitt, E., & Gerig, G. (2009). Simulation of brain tumors in MR
    images for evaluation of segmentation efficacy. Medical image analysis, 13(2),
    297-311.
    Pritchard, A. (1969). Statistical Bibliography or Bibliometrics? , 25, 348-349.
    Radhakrishnan, S., Erbis, S., Isaacs, J. A., & Kamarthi, S. (2017). Novel keyword
    co-occurrence network-based methods to foster systematic reviews of scientific
    literature. PloS one, 12(3), e0172778.
    Rajapakse, M., Kanagasabai, R., Ang, W. T., Veeramani, A., Schreiber, M. J., & Baker,
    C. J. (2008). Ontology-centric integration and navigation of the dengue literature.
    Journal of biomedical informatics, 41(5), 806-815.
    Ramesh, A. N., Kambhampati, C., Monson, J. R. T., & Drew, P. J. (2004). Artificial
    intelligence in medicine. Annals of the Royal College of Surgeons of England,
    86(5), 334-338. doi:10.1308/147870804290
    Resolution WHA71.7. Digital health. In: Seventy-first World Health Assembly,
    Geneva, 26 May 2018. Geneva: World Health Organization; 2018. Available
    from:http://apps. who.int/gb/ebwha/pdf_files/WHA71/A71_R7-en.pdf [cited 2018
    Dec 3].
    Salloum, S. A., Al-Emran, M., Monem, A. A., & Shaalan, K. (2018). Using text mining
    techniques for extracting information from research articles. In Intelligent natural
    language processing: Trends and Applications (pp. 373-397): Springer.
    Sarikaya, D., Corso, J. J., & Guru, K. A. (2017). Detection and localization of robotic
    tools in robot-assisted surgery videos using deep neural networks for region
    proposal and detection. IEEE transactions on medical imaging, 36(7), 1542-1549.
    Scott, J., Wasserman, S., & Carrington, P. (2005). Models and methods in social
    network analysis. Cambridge University Press, 10, 17-58.
    Sekigawa, T., Tajima, A., Hasegawa, T., Hasegawa, Y., Inoue, H., Sano, Y., Inoue, I.
    (2009). Gene‐expression profiles in human nasal polyp tissues and identification
    of genetic susceptibility in aspirin‐intolerant asthma. Clinical Experimental
    Allergy, 39(7), 972-981.
    Shaik, Z., Garla, S., & Chakraborty, G. (2012). SAS® Since 1976: An Application of
    Text Mining to Reveal Trends. Paper presented at the SAS Global Forum.p.1-10.
    Shapiro, S. C. (1992). Encyclopedia of artificial intelligence second edition: John.
    Shi, Z.-Z., & Zheng, N.-N. (2006). Progress and Challenge of Artificial Intelligence.
    Journal of Computer Science and Technology, 21(5), 810.
    doi:10.1007/s11390-006-0810-5
    Sikder, A. R., & Zomaya, A. Y. (2008). Inferring boundary information of
    discontinuous-domain proteins. IEEE transactions on nanobioscience, 7(3),
    200-205.
    Soteriades, E. S., & Falagas, M. E. (2006). A bibliometric analysis in the fields of
    preventive medicine, occupational and environmental medicine, epidemiology,
    and public health. BMC public health, 6, 301-301. doi:10.1186/1471-2458-6-301
    Summers, R. M., Handwerker, L. R., Pickhardt, P. J., Van Uitert, R. L., Deshpande, K.
    K., Yeshwant, S., & Franaszek, M. (2008). Performance of a previously validated
    CT colonography computer-aided detection system in a new patient population.
    American Journal of Roentgenology, 191(1), 168-174.
    Sun, S., Luo, C., & Chen, J. (2017). A review of natural language processing
    techniques for opinion mining systems. Information fusion, 36, 10-25.
    Syed, S., Borit, M., Spruit, M. J. F., & Fisheries. (2018). Narrow lenses for capturing
    the complexity of fisheries: A topic analysis of fisheries science from 1990 to
    2016. 19(4), 643-661.
    Tai, A. M., Albuquerque, A., Carmona, N. E., Subramanieapillai, M., Cha, D. S.,
    Sheko,M., McIntyre, R. S. (2019). Machine learning and big data: Implications
    for disease modeling and therapeutic discovery in psychiatry. Artificial
    Intelligence in Medicine, 101704.
    Tatinati, S., Veluvolu, K. C., & Ang, W. T. (2014). Multistep prediction of
    physiological tremor based on machine learning for robotics assisted
    microsurgery.IEEE transactions on cybernetics, 45(2), 328-339.
    Taylor, S. A., Charman, S. C., Lefere, P., McFarland, E. G., Paulson, E. K., Yee,
    J.,Kim,D. H. J. R. (2008). CT colonography: investigation of the optimum reader
    paradigm by using computer-aided detection software. Radiology, 246(2),
    463-471.
    Theisen, D., Sandner, T. A., Bauner, K., Hayes, C., Rist, C., Reiser, M. F., &
    Wintersperger, B. J. (2009). Unsupervised fully automated inline analysis of
    global left ventricular function in CINE MR imaging. Investigative radiology,
    44(8), 463-468.
    To, C. C., & Vohradsky, J. (2008). Supervised inference of gene-regulatory networks.
    BMC bioinformatics, 9(1), 2.
    Topol, E. (2019). High-performance medicine: the convergence of human and artificial
    intelligence. Nature medicine, 25(1), 44.
    Turing, A. M. (2004). Computing machinery and intelligence (1950). The Essential
    Turing: The Ideas that Gave Birth to the Computer Age. Ed. B. Jack Copeland.
    Oxford: Oxford UP, 433-464.
    Utomo, C. P., Kardiana, A., & Yuliwulandari, R. (2014). Breast cancer diagnosis using
    artificial neural networks with extreme learning techniques. International Journal
    of Advanced Research in Artificial Intelligence, 3(7), 10-14.
    van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer
    program for bibliometric mapping. Scientometrics, 84(2), 523-538.
    doi:10.1007/s11192-009-0146-3
    Van Eck, N. J., & Waltman, L. J. L. U. L. (2013). VOSviewer manual. 1(1), 1-53.
    Vayena, E., Dzenowagis, J., Brownstein, J. S., & Sheikh, A. (2018). Policy
    implications of big data in the health sector. Bull World Health Organ, 96(1),
    66-68. doi:10.2471/blt.17.197426
    Wai, R.-J., & Yang, Z.-W. (2008). Adaptive fuzzy neural network control design via a
    T–S fuzzy model for a robot manipulator including actuator dynamics. IEEE
    Transactions on Systems, Man, Cybernetics, Part B, 38(5), 1326-1346.
    Weinstein, G. S., O’Malley, B. W., Snyder, W., Sherman, E., & Quon, H. (2007).
    Transoral robotic surgery: radical tonsillectomy. Archives of otolaryngology–head
    & neck surgery, 133(12), 1220-1226.
    Wright, A., & Sittig, D. F. (2008). SANDS: a service-oriented architecture for clinical
    decision support in a National Health Information Network. Journal of
    Biomedical Informatics, 41(6), 962-981.
    Wu, J., Li, Y.-Z., Li, M.-L., & Yu, L.-Z. (2009). Two multi-classification strategies
    used on SVM to predict protein structural classes by using auto covariance.
    Interdisciplinary Sciences: Computational Life Sciences, 1(4), 315-319.
    Wu, W. H., Bui, A. A., Batalin, M. A., Au, L. K., Binney, J. D., & Kaiser, W. J. (2008).
    MEDIC: Medical embedded device for individualized care. Artificial intelligence
    in medicine, 42(2), 137-152.
    Xia, Y., & Wang, J. (2004). A recurrent neural network for nonlinear convex
    optimization subject to nonlinear inequality constraints. IEEE Transactions on
    Circuits and Systems, 51(7), 1385-1394.
    Xia, Y., Feng, G., & Wang, J. (2008). A novel recurrent neural network for solving
    nonlinear optimization problems with inequality constraints. IEEE transactions on
    neural networks, 19(8), 1340-1353.
    Yan, Z., Wang, Z., & Xie, H. (2008). The application of mutual information-based
    feature selection and fuzzy LS-SVM-based classifier in motion classification.
    Computer Methods Programs in Biomedicine, 90(3), 275-284.
    Yi, S.-G., Park, T., & Lee, J. K. (2008). Response projected clustering for direct
    association with physiological and clinical response data. BMC bioinformatics,
    9(1), 76.
    Yoon, S., & Kim, S. (2008). AdaBoost-based multiple SVM-RFE for classification of
    mammograms in DDSM. In 2008 IEEE International Conference on
    Bioinformatics and Biomeidcine Workshops . 9(1), S1, 75-82.
    Youqin, P. (2016, 24-26 June 2016). Sustainability trends in financial services sector:
    Evidence from Europe and North America. Paper presented at the 2016 13th
    International Conference on Service Systems and Service Management
    (ICSSSM).
    Yu, C., Davis, C., & Dijkema, G. P. (2014). Understanding the evolution of industrial
    symbiosis research: A bibliometric and network analysis (1997–2012). Journal of
    Industrial Ecology, 18(2), 280-293.
    Yuan, Y., Gretzel, U., & Tseng, Y. H. (2015). Revealing the nature of contemporary
    tourism research: Extracting common subject areas through bibliographic
    coupling. International Journal of Tourism Research, 17(5), 417-431.
    Zhang, T., McCarthy, Z., Jowl, O., Lee, D., Chen, X., Goldberg, K., & Abbeel, P.
    (2018). Deep imitation learning for complex manipulation tasks from virtual
    reality teleoperation. Paper presented at the 2018 IEEE International Conference
    on Robotics and Automation (ICRA).
    Zhao, L., Ruotsalainen, U., Hirvonen, J., Hietala, J., & Tohka, J. (2010). Automatic
    cerebral and cerebellar hemisphere segmentation in 3D MRI: adaptive
    disconnection algorithm. Medical image analysis, 14(3), 360-372.
    Zheng, B., McLean, D. C., Jr., & Lu, X. (2006). Identifying biological concepts from a
    protein-related corpus with a probabilistic topic model. Bmc Bioinformatics,
    7(58).
    Zheng, H.-T., Borchert, C., & Jiang, Y. (2010). A knowledge-driven approach to
    biomedical document conceptualization. Artificial Intelligence in Medicine, 49(2),
    67-78.
    Zhou, G., Xie, S., Yang, Z., & Zhang, J. (2009). Nonorthogonal approximate joint
    diagonalization with well-conditioned diagonalizers. IEEE transactions on neural
    networks, 20(11), 1810-1819.
    Ziuziański, P., Furmankiewicz, M., & Sołtysik-Piorunkiewicz, A. (2014). E-health
    artificial intelligence system implementation: case study of knowledge
    management dashboard of epidemiological data in Poland. International Journal
    of Biology and Biomedical Engineering, 8, 164-171.

    QR CODE
    :::