跳到主要內容

簡易檢索 / 詳目顯示

研究生: 詹偉森
James Wilson
論文名稱: 銠奈米粒子鍍在白金(111)晶面為基板的石墨烯上的原子結構和反應途徑:利用反射式高能電子繞射儀和光電子能譜儀之研究
Atomic Structures and Reactivity of Rhodium Nanoclusters Supported by Graphene Grown on Pt(111): A Combined RHEED and XPS Study
指導教授: 羅夢凡
Meng-Fan Luo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 79
中文關鍵詞: 原子結構石墨烯銠納米簇鉑(111)單晶XPSRHEED
外文關鍵詞: Atomic Structure, Graphene, Rhodium nanoclusters, Platinum (111) Single Crystal, XPS, RHEED
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由反射式高能電子繞射儀,我們檢驗了銠奈米團簇的原子結構和晶格方向,而銠的奈米團簇是藉由物理蒸鍍的方法長在以白金(111)面作為基板的石墨烯上。觀察對於方位角的強度分布,銠的奈米團簇和石墨烯有不同的晶格方向。銠的奈米團簇主要有一對的峰值,意味銠的奈米團簇有一個主要的晶格方向;這不同於石墨烯擁有兩個晶格方向。銠的奈米團簇是以面心立方成長的,而其(111)面平行於石墨烯面,呈現同於白金(111)面的晶格方向。隨著覆蓋率和溫度的變化,銠的奈米團簇的晶格常數是穩定的。為了要探測銠奈米粒子的反應力,我們用光電子能譜儀去監測一氧化碳的吸附位置、分解的反應機制、和原子碳與原子氧的形成。我們在250K吸附一氧化碳在1ML的銠奈米團簇上,然後得到了兩個氧的1s軌域的峰值在533.3和532.35eV;這隱含了一氧化碳吸附在兩個不同的吸附位置── top site和bridge site。當我們加熱到350K和450K,分子氧的訊號強度下降,原子氧的產生在531.2eV,這是一氧化碳分解的效應。再加熱到550K,所有的一氧化碳分子從銠奈米團簇表面脫附。類似的效應在2ML


    By means of reflection high energy electron diffraction (RHEED), we examined the atomic structures and orientation of the Rh nanoclusters grown by vapor deposition on graphene/Pt(111). Rh nanoclusters and graphene were grown with varied orientations observed by intensity distribution as a function azimuthal angle. The Rh nanoclusters have one couple of peak dominant, indicate that the Rh nanoclusters grow with one main orientation, differently from graphene, which was found to grow with two main orientations. Rh nanoclusters are grown as FCC phase with their (111) facets parallel to the graphene surface and exhibit an orientation same as that of Pt(111). The lattice constant of Rh nanoclusters found to be stable as a function of coverage and temperature. In order to probe the reactivity of Rh nanostructures, we used XPS to monitor the CO adsorption sites, the process of dissociation, and the formation of atomic C and O. We adsorbed CO at 250 K on 1 ML Rh nanoclusters, and got two peaks of O 1s signal around 533.3 and 532.35 eV. Implying CO adsorbed at two adsorption sites which are top and bridge site. When we annealed to 350 K and 450 K, the intensity of molecular O 1s signal decreased and the production of atomic oxygen appear around 531.2 eV as the effect of CO dissociation. Further annealing to high temperature 550 K all molecular CO desorbed from the surface of Rh nanoclusters. The similar result also found on 2 ML Rh nanoclusters.

    Contents Chapter 1 Introduction ..................................................1 Reference .......................................................3 Chapter 2 Literature Survey .............................................4 2.1 Graphene growth on Pt(111) and other substrates .............4 2.1.1 Graphene/Platinum(111) ............................4 2.1.2 Graphene/Iridium(111) .............................7 2.2 Pt and Rh Nanocluster on Graphene Moiré Pattern on Cu(111) .........10 2.3 Carbon Monoxide Dissociation .......................................14 2.3.1 Carbon Monooxide Dissociation on Rh Nanopyramids .14 2.3.2 Carbon Monooxide Dissociation Characteristic on Size-Distributed Rhodium Islands on Alumina Model Substrates .................................17 Reference ......................................................20 Chapter 3 Experimental Apparatus and Procedures ........................22 3.1 Apparatus and Ultrahigh Vacuum (UHV) System ................22 3.1.1 Introduction to Vacuum ...........................23 3.1.2 Reflection High Energy Electron Diffraction (RHEED) ..........................................25 3.1.3 XPS Analysis System ..............................29 3.1.4 X-ray Photoelectron Spectroscopy (XPS) ...........30 3.2 Experimental Procedures ....................................36 3.2.1 Sample Cleaning ..................................36 3.2.2 Graphene Growth ..................................38 3.2.3 Deposition Procedures ............................38 3.2.4 Expose CO ........................................39 Reference ......................................................40 Chapter 4 Results and Discussions ......................................41 4.1 The structure of Rh clusters on Graphene/Pt(111) ...........41 4.1.1 Pt(111) surface ..................................41 4.1.2 The Structure of Graphene on Pt(111) .............43 4.1.3 The Structure of Rh nanoclusters on Graphene/Pt(111) .................................46 4.1.4 The Coverage Effect of Rh nanoclusters on Graphene/Pt(111) .................................51 4.1.5 The Annealing Effect of Rh nanoclusters on Graphene/Pt(111) .................................52 4.2 XPS Study For the Reactivity of CO Dissociation on Rhodium Nanoclusters on Graphene/Pt(111) ...............................54 Reference ......................................................61 Chapter 5 Conclusion ...................................................62

    Reference Chapter 1:
    [1] A. P. Alivisatos, Science. 271, 933 (1996)
    [2] R. E. Palmer, New Sci. 2070, 38 (1996)
    [3] G. P. Lopinski, V. I. Merkulov, J. S. Lannin, Phys. Rev. Lett. 80, 4241 (1998)
    [4] C. R. Henry, Sruf. Sci. Rep. 31, 231 (1998)
    [5] M. Haruta, Catal. Today 36, 153 (1997)
    [6] M. Valden, X. Lai, D. W. Goodman, Science 281, 1647 (1998)
    [7] Y. Zhang, G. Jacobs, D. E. Sparks, M. E. Dry, and B. H. Davis, Catal Today 71, 411
    (2002).
    [8] F. Buatier de Mongeot, A. Toma, A. Molle, S. Lizzit, L. Petaccia, and A. Baraldi, Phys. Rev. Lett. 97, 056103, (2006).

    Reference Chapter 2:
    [1] A. B. Preobrajenski, May Ling Ng, A. S. Vinogradov, and N. Martensson, Physics Review B 78, 073401 (2008).
    [2 ] Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. Du, F. Liu, and H. J. Gao, Adv. Mater. 21, 2777 (2009).
    [3] A. T. N’Diaye, J. Coraux, T. N. Plasa, C. Busse, and T. Michely, New J. Phys. 10, 043033 (2008).
    [4] D. Franz, S. Runte, C. Busse, S. Schumacher, T. Gerber, T. Michely, M. Mantilla, V. Kilic, J. Zegenhagen, and A. Stierle, Phys. Rev. Lett. 2013, 110, 065503
    [5] R. van Gastel, A. T. N’Diaye, D. Wall, J. Coraux, C. Busse, N. M. Buckanie, F.-J. Meyer zu Heringdorf, M. Horn von Hoegen, T. Michely, and B. Poelsema, Appl. Phys. Lett. 95, 121901 (2009).
    [6] A. T. N’Diaye, S. Bleikamp, P. J. Feibelman, and T. Michely, Phys. Rev. Lett. 97, 215501 (2006).
    [7] U. Pietsch, V. Holy, T. Baumbach, High-Resolution X-Ray Scattering (Springer, Berlin, 2004).
    [8] Esin Soy, Zhu Liang, and Michael Trenary, J. Phys. Chem. C, 119 (44), (2015).
    [9] Lucci, F. R.; Lawton, T. J.; Pronschinske, A.; Sykes, E. C. H. Atomic Scale Surface Structure of Pt/Cu (111) Surface Alloys. J. Phys. Chem. C 2014, 118, 3015−3022.
    [10] Evans, J.; Thiel, P.; Bartelt, M. C. Morphological Evolution During Epitaxial Thin Film Growth: Formation of 2D Islands and 3D Mounds. Surf. Sci. Rep. 2006, 61, 1−128.
    [11] Freire, R. L. H.; Kiejna, A.; Da Silva, J. L. F. Adsorption of Rh, Pd, Ir, and Pt on the Au(111) and Cu(111) Surfaces: A Density Functional Theory Investigation. J. Phys. Chem. C 2014, 118, 19051−19061.
    [12] Graham, G.; Schmitz, P.; Thiel, P. A. Growth of Rh, Pd, and Pt Films on Cu(100). Phys. Rev. B 1990, 41, 3353−3359.
    [13] N’Diaye, A. T.; Gerber, T.; Busse, C.; Mysliveček, J.; Coraux, J.; Michely, T. A Versatile Fabrication Method for Cluster Superlattices. New J. Phys. 2009, 11, 103045.
    [14] Zhou, Z.; Gao, F.; Goodman, D. W. Deposition of Metal Clusters on Single-Layer Graphene/Ru(0001): Factors That Govern Cluster Growth. Surf. Sci. 2010, 604, L31−L38.
    [15] Cavallin, A.; Pozzo, M.; Africh, C.; Baraldi, A.; Vesselli, E.; Dri, C.; Comelli, G.; Larciprete, R.; Lacovig, P.; Lizzit, S.; et al. Local Electronic Structure and Density of Edge and Facet Atoms at Rh Nanoclusters Self-Assembled on a Graphene Template. ACS Nano 2012, 6, 3034−3043.
    [16] Simoes, J. M.; Beauchamp, J. Transition Metal-Hydrogen and Metal-Carbon Bond Strengths: The Keys to Catalysis. Chem. Rev. 1990, 90, 629−688.
    [17] F. Buatier de Mongeot, A. Toma, A. Molle, S. Lizzit, L. Petaccia, and A. Baraldi, Phys. Rev. Lett. 97, 056103, (2006).
    [18] A. Baraldi et al., J. Electron Spectrosc. Relat. Phenom. 76, 145 (1995).
    [19] A. Baraldi et al., Surf. Sci. Rep. 49, 169 (2003).
    [20] A. Baraldi et al., Surf. Sci. 367, L67 (1996).
    [21] N. Martensson and A. Nilsson, in Springer Series in Surface Science, edited by W. Eberhardt (Springer-Verlag, Berlin, 1994), Vol. 35.
    [22] This is due to changes of intermolecular interactions between CO molecules in on-top sites or partial occupation of threefold sites on the (111) facets of the RP.
    [23] S. Andersson et al., J. Chem. Phys. 108, 2967 (1998).
    [24] S. Doniach and M. Sunjic, J. Phys. C 3, 285 (1970).
    [25] S. Andersson, M. Frank, A. Sandel, A. Giertz, B. Brena, P. A. Bru¨ hwiler, and N. Ma°rtensson, and J. Libuda, M. Bau¨mer, and H.-J. Freund, J. Chem. Phys., Vol. 108, No. 7, (1998).
    [26] M. Frank, S. Andersson, J. Libuda, S. Stempel, A. Sandell, B. Brena, A. Giertz, P. A. Bru¨hwiler, M. Ba¨umer, N. Ma°rtensson, and H.-J. Freund, Chem. Phys. Lett. 279, 92 (1997).
    [27] A. Beutler, E. Lundgren, R. Nyholm, J. Andersen, B. Setlik, and D. Heskett,
    Surf. Sci. 371, 381 (1997).
    [28] J. Libuda, Ph.D. thesis, Ruhr-Universita¨t Bochum, 1996.
    [29] M. Rebholz, R. Prins, and N. Kruse, Surf. Sci. Lett. 259, L797 (1991).
    [30] Y. Kim, H. C. Peebles, and J. M. White, Surf. Sci. 114, 363 (1982).
    [31] J. T. Yates, Jr., E. D. Williams, and W. H. Weinberg, Surf. Sci. 91, 562 (1980).
    [32] M. Ba¨umer, M. Frank, S. Stempel, J. Libuda, and H.-J. Freund, Surf. Sci. 391, 204 (1997).

    Reference Chapter 3:
    [1] Peter J. Dobson, An Introduction to Reflection High Energy Electron Diffraction.
    [2] Elaine M. McCash, Surface Chemistry.
    [3] John B. Hudson, Surface Science: An Introduction.
    [4] 行政院國家科學委員會精密儀器發展中心, 真空技術與應用.
    [5] R. Franchy, Surface Science Reports 38 (2000) 195-294.
    [6] M.S. Zei, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surf. Sci. 600 (2006) 1942-1951.
    [7] J. C. Vickerman, Surface Analysis – The Principal Techniques, Jon Wiley & Sons, 1997.
    [8] A.K. Stantra and D.W. Goodman, J. Phys: Condens. Matter 14(2002) R31-R62.
    [9] D.j. O’Connor, B.A. Sexton, R. St. C. Smart, Surface Analysis Methods in Materials
    Science, Springer-Verlag, 1992.
    [10] John F. Watts, John Wolstenholme, An introduction of surface analysis by XPS.
    [11] Y. W. Yang, L. J. Fan, Langmuir 18, 1157-1164(2002).

    Reference Chapter 4:
    [1] Sam Zhang, Nanostructured Thin Films and Coatings: Mechanical Properties, CRC Press (2010), p358.
    [2] Mahmood Aliofkhazraei, Nasar Ali, William I. Milne, Cengiz S. Ozkan, Stanislaw Mitura, Juana L. Gervasoni, Graphene Science Handbook: Size-Dependent Properties, CRC Press (2016), p105 ~ p106.
    [3] Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. Du, F. Liu, and H. J. Gao, Adv. Mater. 21, 2777 (2009).
    [4] Cai, Pei Yang. 2016. Methanol Decomposition on Pt Nanoclusters Supported by Graphene on Pt(111): A Combined RHEED, IRAS and TPD Study. Zhongli,Taiwan, National Central University pp52, 55. Master Thesis.
    [5] Moulder, John F., Stickle, William F., Sobol, Peter E., Bomben, Kenneth D., 1992. Handbook of X-ray Photoelectron Spectroscopy. Physical Electronic, Inc: 6509 Flying Cloud Drive Eden Praire, Minnesota 55344 United State of America.
    [6] A. B. Preobrajenski, May Ling Ng, A. S. Vinogradov, and N. Mårtensson, Controlling Graphene Corrugation on Lattice-Mismatched Substrates, Phys. Rev. B. 78, 073401 (2008).
    [7] F. Buatier de Mongeot, A. Toma, A. Molle, S. Lizzit, L. Petaccia, and A. Baraldi, Phys. Rev. Lett. 97, 056103, (2006).

    QR CODE
    :::