| 研究生: |
蔡雅茵 Ya-yin Tsai |
|---|---|
| 論文名稱: |
具界面活性溶質之蒸發殘留圖形研究 Evaporation stain formed by surface-active solutes |
| 指導教授: |
曹恆光
Heng-kwong Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 咖啡漬圈環 、咖啡漬圈環效應 、具界面活性溶質 、接觸角遲滯 、蒸發殘留圖樣 、潤濕現象 |
| 外文關鍵詞: | coffee ring, coffee ring effect, surface-active solutes, contact angle hysteresis, evaporation stain, wetting phenomenon |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以往的科學家在進行咖啡漬圈環效應的研究時,多選用微米等級的微粒作為溶質,本論文選用不同尺寸的溶質,研究對咖啡漬圈環表現圖形的影響。溶質方面選擇奈米粒子、小分子(金屬鹽類溶液與界面活性劑)以及高分子。
經過實驗後發現,無論是奈米粒子、小分子或是高分子溶質,溶液形成類環狀圖形與否的重要因素皆為接觸角遲滯的大小,若接觸角遲滯小,接觸線不斷內縮,溶質將隨著接觸線撤退最後形成點狀圖形;反之,若接觸角遲滯大,溶質就能被outflow帶往液滴邊緣,最終形成類環狀圖形。我們可以藉由選擇接觸角遲滯大的基材,或是使用具有界面活性的溶質來控制類環狀圖形的出現,反之則可消除類環狀圖形。
在高分子與奈米粒子溶液中,有部分的溶質會在不同濃度時表現出不同的蒸發殘留圖形,這種特殊的現象稱為濃度效應。濃度效應有兩種成因:(1)NaPSS型:溶液之後退角隨著溶質濃度的上升而大幅度地下降,在溶液於低濃度時,蒸發時接觸角角度下降速率高於後退角下降的速率,使接觸角角度能夠到達後退角,接觸線depinning,最終形成點狀圖形;反之形成類環狀圖形。(2) PEG、銳鈦礦奈米二氧化鈦溶液型:液滴蒸發過程中溶質濃度到達飽和析出。故越高濃度的液滴越有可能在接觸線來不及內縮時到達飽和,形成看似接觸線不會退縮的類環狀圖形。
值得注意的是,如NaPSS一般會因為濃度改變而其活性亦隨之改變的溶液,不同接觸角的量測方法所得到的結果將有所差異。如果使用蒸發法,因為隨著蒸發,溶液的濃度不斷地上升,溶液的後退角隨之改變,蒸發法將不能量出一開始欲量測濃度的後退角。但是微量針頭法、平板法與傾斜板法因為量測時所耗用的時間短暫,對於溶液濃度的影響不大,仍可使用。
Drying of a droplet containing non-volatile solutes, initially dispersed over the entire drop, is an everyday phenomenon and it commonly leaves a ring of solute deposit on a surface, rather than a uniform spot. Although droplet drying is often observed, it gives rise to surprisingly rich morphologies, which depend on the contact line geometry, solute size and chemistry, and substrate-solvent interaction.
The formation of the well-known coffee-ring pattern after the liquid drop evaporation has been successfully explained by Deegan et al. The radial outward flow is thus induced by the differential evaporation rates across the drop. Contact line pinning of the drying drop on the surface leads to liquid flow from the interior to replenish the liquid evaporating from the edge. The resulting edgeward flow can carry nearly all the dispersed solutes toward the edge and deposit them in the vicinity of the contact line to form a ring-like stain. Evidently, the appearance of the coffee-ring effect involves three ingredients for a drying droplet: non-volatile solute, outward flow, and contact line pinning.
Contact angle hysteresis dominates the formation of ring-like stain and there are two factors to influence the contact angle hysteresis: substrate and solutes. In our study, the drying process and drying patterns are observed on the substrate of low contact angle hysteresis with different sizes solutes.
From the observation of our experiments, we generalize some conclusions in the following:
(1) In order to acquire a ring-like stain on a hydrophilic substrate with weak CAH, the wetting property of the liquid drop on the substrate must be modified and it can be achieved by surface-active solute. The separation of a mixture can be achieved on evaporation stain based on their difference of surface-activity. The pattern of evaporation stain can be determined by the competition between contact line receding and small-sized solute precipitation.
(2) There are three types of solutes :
(i) No surface-activity. The addition of some solutes, such as Dextran and PDDC, has no influence on the surface tension of solution. Therefore, the dot pattern is observed.
(ii) Weak surface-activity. The surface tension will decrease slowly with increasing the concentration of some solutes such as NaPSS. Hence, the formation of dot pattern is found at low concentration while the ring-like pattern takes place at high concentration.
(iii) Strong surface-activity. The presence of a small amount of some solutes, such as PVP and PVA may result in a rapid decrement of surface tension of solution. As a result, the ring-like pattern is formed.
(3)By using nanoparticle solution, stick-slip pattern is observed and particle size may affect the evaporation stain.
[1] R. D. Deegan, O. Bakajin, T. F. Dupont, et al., “ Capillary flows the cause of ring stains from dried liquid drops” , Nature, 389, 827 (1997)
[2] R. D. Deegan, O. Bakajin, T. F. Dupont, et al., “ Contact line deposits in an evaporating drop” , Physical Review E, 62, 756 (2000)
[3] R. Bhardwaj, X. Fang, Daniel, et al., “ Attinger pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study” , New Journal of Physics, 11, 33 (2009)
[4] X. Xu, J. Luo, D. Guo, “ Radial-velocity profile along the surface of evaporating liquid droplets” Soft Matter, 8, 5797 (2012)
[5] L. Xu, S. Davies, A. B. Schofield, et al., “ Dynamics of Drying in 3D Porous Media” PRL, 101, 094502 (2008)
[6] A. S. Sangani, C. Lu, K. Su, J. A. Schwarz, “ Capillary force on particles near a drop edge resting on a substrate and a criterion for contact line pinning” , Physical Review E, 80, 011603 (2009)
[7] P. A. Kralchevsky, N. D. Denkov, “ Capillary forces and structuring in layers of colloid particles” , Current Opinion in Colloid & Interface Science, 6, 383 (2001)
[8] R. D. Leonardo, F. Saglimbeni, G. Ruocco, “ Very-Long-Range Nature of Capillary Interactions in Liquid Films” , Physical Review L, 100, 106103 (2008)
[9] X. Shen, C. M. Ho, T. S. Wong, “Minimal Size of Coffee Ring Structure” , J. Phys. Chem. B, 114, 5269 (2010)
[10] H. M. Gorr, J. M. Zueger, J. A. Barnard, “ Lysozyme Pattern Formation in Evaporating Drops” , Langmuir, 28, 4039 (2012)
[11] J. Park, J. Moon, “ Control of Colloidal Particle Deposit Patterns within Picoliter Droplets Ejected by Ink-Jet Printing” , Langmuir, 22, 3506 (2006)
[12] R. Bhardwaj, X. Fang, P. Somasundaran, et al., “ Self-Assembly of Colloidal Particles from Evaporating Droplets: Role of DLVO Interactions and Proposition of a Phase Diagram” , Langmuir, 26, 7833 (2010)
[13] I. I. Smalyukh, O. V. Zribi, J. C. Butler, et al., “ Structure and Dynamics of Liquid Crystalline Pattern Formation in Drying Droplets of DNA” , Physical Review L, 96, 177801 (2006)
[14] L. Zhang, S. Maheshwari, H. C. Chang, Y. Zhu, “ Evaporative Self-Assembly from Complex DNA - Colloid Suspensions” , Langmuir, 24, 3911 (2008)
[15] S. Maheshwari, L. Zhang, Y. Zhu, H. C. Chang, “ Coupling Between Precipitation and Contact-Line Dynamics: Multiring Stains and Stick-Slip Motion” , Physical Review L, 100, 044503 (2008)
[16] N. N. Jason, R. G. Chaudhuri,S. Paria, “ Self-assembly of colloidal sulfur particles influenced by sodium oxalate salt on glass surface from evaporating drops” , Soft Matter, 8, 3771 (2012)
[17] S. Choi, S. Stassi,A. P. Pisano,T. I. Zohdi, “ Coffee-Ring Effect-Based Three Dimensional Patterning of Micro/ Nanoparticle Assembly with a Single Droplet” , Langmuir, 26, 11690 (2010)
[18] M. C. Lensen, K. Takazawa, J. A. A. W. Elemans, C. R. L. P. N. Jeukens, P. C. M. Christianen, et al., “ Aided Self-Assembly of Porphyrin Nanoaggregates into Ring-Shaped Architectures” , Chem. Eur. J., 10, 831 (2004)
[19] K. J. Stebe, “Assembly of Colloidal Particles by Evaporation on Surfaces with Patterned Hydrophobicity” , Langmuir, 20, 3062 (2004)
[20] H. Y. Ko, J. Park, H. Shin, J. Moon, “Rapid Self-Assembly of Monodisperse Colloidal Spheres in an Ink-Jet Printed Droplet” , Chem. Mater., 16, 4212 (2004)
[21] J. Xu, J. Xia, S. W. Hong, Z. Lin, Feng Qiu, et al., “Self-Assembly of Gradient Concentric Rings via Solvent Evaporation from a Capillary Bridge” , Physical Review L, 96, 066104 (2006)
[22] A. Denneulin, J. Bras, F. Carcone, et al., “ Impact of ink formulation on carbon nanotube network organization within inkjet printed conductive films” , Carbon, 49, 2603 (2011)
[23] M. Layani, M. Gruchko, O. Milo, et al., “ Transparent Conductive Coatings by Printing Coffee Ring Arrays Obtained at Room Temperature” , ACS Nano, 3, 3537 (2009)
[24] F. C. Krebs, “ Fabrication and processing of polymer solar cells: A review of printing and coating techniques” , Solar Energy Materials & Solar Cells, 93, 394 (2009)
[25] Y. T. Gizachew, L. Escoubas, J. J. Simon, M. Pasquinelli, et al., “ Towards ink-jet printed fine line front side metallization of crystalline silicon solar cells” , Solar Energy Materials & Solar Cells, 95, S70 (2011)
[26] F. C. Chen, J. P. Lu, W. K. Huang., “ Using Ink-Jet Printing and Coffee Ring Effect to Fabricate Refractive Microlens Arrays” , IEEE, 21, 648 (2009)
[27] D. Zhang, Y. Xie, M. F. Mrozek, et al., “ Raman Detection of Proteomic Analytes” , Anal. Chem, 75, 5703 (2003)
[28] J. Filik, N. Stone, “ Drop coating deposition Raman spectroscopy of protein mixtures” , Analyst, 132, 544 (2007)
[29] D. Soltman, V. Subramanian, “ Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect” , Langmuir, 24, 2224 (2008)
[30] C. T. Chen, F. G. Tseng, C. C. Chieng, “ Evaporation evolution of volatile liquid droplets in nanoliter wells” , Sensors and Actuators A, 130, 12 (2006)
[31] W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, H. A. Stone, “Influence of Substrate Conductivity on Circulation Reversal in Evaporating Drops” , Physical Review L, 99, 234502 (2007)
[32] H. Hu, R. G. Larson, “ Marangoni Effect Reverses Coffee-Ring Depositions” , J. Phys. Chem. B, 110, 7090 (2006)
[33] T. Still, P. J. Yunker, A. G. Yodh, “ Surfactant-Induced Marangoni Eddies Alter the Coffee-Rings of Evaporating Colloidal Drops” , Langmuir, 28, 4984 (2012)
[34] B. M. Weon, J. H. Je, “ Capillary force repels coffee-ring effect” , Physical review E, 82, 015305 (2010)
[35] P. J. Yunker, T. Still, M. A. Lohr, A. G. Yodh, “ Suppression of the coffee-ring effect by shape-dependent capillary interactions” , Nature, 476, 308 (2011)
[36] H. B. Eral, D. M. Augustine, M. H. G. Duits, F. Mugele, “ Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting” , Soft Matter, 7, 4954 (2011)
[37] G. Huber. “ Rush hour in a drop of coffee” , Physics, 4, 65 (2011)
[38] 葉銘智, “ 分子構型對濕透行為之影響研究” , 國立台灣大學化學工程學研究所博士論文 (2003)
[39] J. S. Rowlinson, B. Widom, “ Molecular Theory of Capillarity” , Oxford., 66, 816 (1982).
[40] R. N. Wenzel, “ Resistance of solid surfaces to wetting by water” , Industrial & Engineering Chemistry, 28, 988 (1936).
[41] A. B. D. Cassie, S. Baxter, “ Wettability of porous surfaces” , Trans. Faraday Soc. , 40, 546 (1944).
[42] J. F. Joanny and P. G. de Gennes, “ A model for contact angle hysteresis” , Journal of Chemical Physics, 81, 552 (1984)
[43] S. J. Hong, F. M. Chang et al., “ Anomalous Contact Angle Hysteresis of a Captive Bubble: Advancing Contact Line Pinning” , Langmuir, 27, 6890 (2011).
[44] R. E. Johnson, R. H. Dettre et al., “ Contact angle hysteresis. Contact angle, wettability, and adhesion” , Advances in Chemistry, 43, 112 (1964).
[45] F. M. Chang, S. J. Hong et al., “ High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects” , Applied physics letters, 95, 064102 (2009).
[46] E. Rame, “ The interpretation of dynamic contact angles measured by the Wilhelmy plate method” , Journal of colloid and interface science, 185, 245 (1997).