| 研究生: |
洪群泰 Cyun-Tai Hong |
|---|---|
| 論文名稱: |
全場相位式表面電漿共振技術 Surface plasmon resonance technique with full-field phase detection |
| 指導教授: |
李朱育
Ju-Yi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 全場量測 、表面電漿共振 、偏振干涉術 |
| 外文關鍵詞: | SPR, polarization interference, full-field detection |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以偏振干涉術配合SPR技術,再結合了CCD取像,整合出可以量測出一整面的折射率分佈的全場SPR相位儀。本解相系統的相位解析度為0.3度,整體系統對折射率的靈敏度為3*10^-6 RIU(Refractive Index Unit, RIU)。本論文之實驗為量測出細微折射率的改變,以及驗證系統基本功能。此相位儀在實驗上可以分辨出濃度差1%酒精溶液(折射率差約0.0004RIU)。本系統具有即時、高靈敏度、大量平行篩檢等優點。若能實際結合生醫微陣列晶片的設計,對於量測生物分子的反應、DNA檢測等,均有廣泛的應用。
A surface plasmon resonance (SPR) technique with full-field phase detection is proposed. In our full field system, we combine a method of the polarization interference for phase detection, SPR technique and CCD Video camera. The resolution of phase detection is about 0.3 degree, and the measurement sensitivity of refractive index is about 3*10^-6 RIU (Refractive Index Unit). There are several advantages like immediate detection, high sensitivity and parallel examining in our system .
[1] 安毓英、曾小東, “光學感測與量測,” 五南圖書
[2] 徐照夫, “光感測器及其使用法,” 全華圖書
[3] 林宸生、陳德請, “近代光電工程導論,” 全華圖書
[4] 邱國斌、蔡定平, “左手材料奈米平板的表面電漿量子簡介“ (2002)
[5] 鄒嘉源, “表面電漿共振移項干涉術:即時微陣列DNA雜交分析,” 國立中央大學92學年度碩士論文
[6] H. E. De Bruijin, B. S. F. Altenburg, R. P. H. Kooyman, and J.Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance,” Opt. Commun. (1991), Vol. 82, 425–432.
[7] M. T. Flanagan and R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. (1984), Vol. 20, 968–970.
[8] J. W. Sadowski, J. Lekkala, and I. Vikholm, “Biosensors based on surface plasmons excited in non-noble metals,” Biosens. Bioelectron. (1991), Vol. 6, 439–444.
[9] K. Matsubara, S. Kawata, and S. Minami, “A compact surface plasmon resonance sensor for measurement of water in process,” Appl. Spectrosc. (1988), Vol. 42, 1375–1379.
[10] R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensorbased on surface plasmon resonance,” Sens. and Actuators B (1993), Vol.12, 213–220.
[11] M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonso-chamarro, I. Graces, and J. Mateo, “Determination of probable alcohol yield in musts by means of a SPR optical sensor,” Sens. and Actuators B (1993), Vol. 11, 455–459.
[12] E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch (1968), Vol. 23, 2135–2136.
[13] U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, and M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques (1991),Vol. 11, 620–627.
[14] X. Sun, S. Shiokawa, and Y. Matsui, “Interaction of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys.(1991), Vol. 69, 362–366 .
[15] P. D. Gershon and S. Khilko, “Stable chelating linkage for reversible immobilization of oligohistidine tagged proteins in the BIAcore Surface Plasmon Resonance detector,” J. Immunol. Methods (1995), Vol. 183, 65–76 .
[16] H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer Tracts in Modern Phys.(1988), Vol. 111.
[17] E. Kretschmann, “Die Bestimmung Optischer Konstanten von Metallen durch Anregung von Oberflaechenplasmaschwingungen,” Z. Phys. (1971), Vol. 241, 313–324.
[18] R. Georgiadis, K. A. Peterlinz , “Surface Plasmon Resonance Spectroscopy as a Probe of In-Plane Polymerization in Monolayer Organic Conducting Films,” American Chem. Soc. (2000), Vol.16, No.17, 6759-6763.
[19] A. A. Kolomenskii, P. D. Gershon, “Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance,” Appl. Opt. (1997), Vol. 36, No. 25, 6539-6548.
[20] H. E. Brujin, R. P. H. Kooyman, and J. Greve, “Choice of metal and wavelength for surface plasmon resonance sensors: some considerations,” Appl. Opt. (1992), Vol. 31, 440–442.
[21] S. Otsuki, K. Murai, and S. Yoshikawa, “Development of a two-dimensional evaluation method for thin layers using surface plasmon resonance,” Chem. Lett. (2001), 1312–1313.
[22] S. Otsuki, K. Tamada, and S. Wakida, “Wavelength-scanning surface plasmon resonance imaging,” Appl. Opt. (2005), Vol. 44, No. 17, 3468-3472.
[23] I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. and Autuators B (1999) , Vol. 54, 98-105.
[24] E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid Interface Sci. (1991), Vol. 143, 513–526 .
[25] B. Chadwick and M. Gal, “An optical temperature sensor using surface plasmons,” Jpn. J. Appl. Phys. (1993) , Vol.32, 2716-2717.
[26] K. H. Chen, C. C. Hsu, D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun`. (2002), Vol.209, 167–172.
[27] W. C. Kuo, C. Chou, and H. T. Wu, “Optical heterodyne surface-plasmon resonance biosensor,” Opt. Lett. (2003), Vol. 28, No. 15, 1329-1331.
[28] S. G. Nelson, K. S. Johnston, S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. and Autuators B(1996), Vol.35, 187-191.
[29] A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. (1998), Vol.35, 5-8.
[30] P. I. Nikitin, A. A. Belogazov, V. E. Kochergin M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. and Autuators B(1999), Vol.54, 43-50.
[31] N. R. Sivakumar, W. K. Hui, K. Venkatakrishnan, B. K. A. Ngoi, “Large surface profile measurement with instantaneous phase-shifting interferometry,” Opt. Eng.(2003), Vol.42(2), 367–372.
[32] S. G. Nelson, K. S. Johnston and S. S. Yee, “High Sensitivity Surface Plasmon Resonance Sensor Based on Phase Detection,” Sens. and Actuators B(1996), vol.35, 187-191.
[33] N. Destouches, H. Giovannini, and M. Lequime, “Interferometric measurement of the phase of diffracted waves near the plasmon resonances of metallic gratings,” Appl. Opt.(2001), Vol. 40, No. 31, 5575-5583.
[34] S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes,” Appl. Opt. (2003), Vol. 42, No. 34, 6905-6910.
[35] A. Arce, A. Arce Jr., A. Soto, “Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K,” Therm. Acta. (2005) ,Vol. 435 , 197-201.
[36] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward , “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. (1983), Vol.22 ,1099-1120.