| 研究生: |
莊信祥 Shin-shiang Juang |
|---|---|
| 論文名稱: |
5052鋁合金TIG對接銲件疲勞性質與疲勞壽命評估之研究 |
| 指導教授: |
黃俊仁
Jiun-ren Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 5052 、鋁合金 、TIG銲接 、疲勞壽命 |
| 外文關鍵詞: | 5052, Aluminium Alloy, Inert Gas Tungsten Arc Welding, Fatigue Life |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以5052-H32鋁合金為實驗材料,選擇對接接頭,進行惰氣鎢極電弧銲接(TIG銲),對於鋁合金銲接結構件在等負荷振幅及變動負荷振幅下之疲勞性質及疲勞壽命分析模式進行深入研究。
研究結果顯示TIG銲疲勞試片斷裂點大部分是在銲道上且靠近熱影響區的位置。5052-H32 TIG對接銲件之疲勞強度(S-N曲線)比IIW、BS8118及Eurcode 9等規範之對應的設計曲線高。IIW規範之設計曲線與實驗結果最接近,尤其是在低壽命區域。在高壽命區域,各規範的設計曲線也越保守估計。綜合拉張平均應力歷程(TRN歷程)及輕微壓縮平均應力歷程(BRK歷程)變動振幅疲勞測試結果,建議以Gerber法進行平均應力修正,可得較佳的疲勞壽命預測。5052-H32鋁合金TIG對接銲件在固定振幅疲勞及變動振幅疲勞斷面上皆有疲勞紋產生。
In this study, 5052-H32 aluminum alloy weldment with butt joint were produced by inert gas tungsten arc welding (TIG welding). The fatigue properties of welded aluminum structures under constant and variable amplitude loadings were obtained, respectively.
The results showed that fracture points of TIG fatigue specimens were mostly at the weld near the heat affected zone, tungsten inert gas welding the fatigue strengths (S-N curves) of 5052-H32 aluminum butt joints were higher than those of design curves proposed by IIW, BS8118 and Eurocode 9 standards. In the short life region, the IIW design curve was the best one which is close to the present experimental results. In the long life region, all the design curves of specifications were more conservative.
With respect to mean stress correction in fatigue life prediction, Gerber method is the best one for 5052-H32 aluminum TIG butt joints. Both of constant amplitude fatigue loading and variable amplitude fatigue loading produce fatigue striations infracture surfaces.
[1] H. O. Fuchs, “Metal Fatigue in Engineering,” John-Wiley & Sons Inc. 1980.
[2] http://www.science.globalsino.com/1/1science9654.html
[3] 黃振賢,「機械材料」,文晶圖書股份有限公司,第311~331頁,民國69年。
[4] 賴耿陽,「非鐵金屬材料」,復漢出版社,第151~168 頁,民國71 年。
[5] 趙光榮,「氬氣鎢極電銲能力本位訓練教材_鋁板平銲機本銲道銲接」,行政院勞工委員會職業訓練局,民國90。
[6] 董孟軒,「Sc與Cu含量對A201合金銲接特性之研究」,國立中央大學,碩士論文,民國93年。
[7] G. J. Zhang, Z. H. Yan, L. Wu, “Visual sensing of weld pool in variable polarity TIG welding of aluminium alloy,” Transactions of Nonferrous Metals Society of China, Vol. 16, pp. 522-526, 2006.
[8] X. H. Wang, J. T. Niu, S. K. Guan, L. J. Wang, D. F. Cheng, “Investigation on TIG welding of SiCp-reinforced aluminum–matrix composite using mixed shielding gas and Al–Si filler,” Materials Science and Engineering, Vol. 499, pp. 106-110, 2009.
[9] 莊弘瑋,「活性助銲劑與銲接製程參數對6061鋁合金銲道熔深能力之研究」,國立交通大學,碩士論文,民國99年。
[10] 唐自勇,「A7050 與A2024 鋁合金異質銲接與銲後熱處理」,國立交通大學,碩士論文,民國100年。
[11] S. J. Maddox, “Review of fatigue assessment procedures for welded aluminium structures,” International Journal of Fatigue, Vol. 25, pp. 1359–1378, 2003.
[12] M. Matema, A. Koursaris, A. Paterson, “Fatigue properties of fabricated aluminium I-beams,” Journal of The South African Institute of Mining and Metallurgy, Vol. 105, No. 3, pp. 177-181, March 2005.
[13] T. Matic, Z. Domazet, “Determination of structural stress for fatigue analysis of welded aluminium components subjected to bending,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 28, No. 9, pp. 835-844, September 2005.
[14] M. Ericsson, R. Sandström, ”Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG”, International Journal of Fatigue, Vol. 25, pp. 1379-1387, 2003.
[15] J. A. M. Pinho-da-Cruz, J. A. M. Ferreira, J. D. M. Costa, L. F. P. Borrego, “Fatigue analysis of thin AlMgSi welded joints under constant and variable amplitude block loadings,” Thin-Walled Structures, Vol. 41, No. 5, pp. 389-402, May 2003.
[16] N. Ye, T. Moan, “Improving fatigue life for aluminium cruciform joints by weld toe grinding,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 31, No. 2, pp. 152-163, February 2008.
[17] BS 8118:1991. Structural use of aluminium—part 1 code of practice for design. London: BSI, 1991.
[18] Eurocode 9. Design of aluminium structures: part 1-3: structures susceptible to fatigue. Brussels: CEN, 1998 ENV, 1999-2.
[19] International Institute of Welding. Fatigue design of welded joints and components. Abington, Cambridge: Abington Publishing, 1996.
[20] V. Grubišic, “Service strength of welded aluminium structures influences and validation,” Welding in the World, Vol. 51, SPEC. ISS, pp. 1-16, July 15, 2007.
[21] C. D. M. Liljedahl, O. Zanellato, M. E. Fitzpatrick, J. Lin, L. Edwards, “The effect of weld residual stresses and their re-distribution with crack growth during fatigue under constant amplitude loading,” International Journal of Fatigue, Vol. 32, No. 4, pp. 735-743, 2010.
[22] V. N. Drew, “Fatigue Considerations in Welded Structure,” SAE Technical Paper No. 820695, Society of Automotive Engineers, Warrendale, PA, 1982.
[23] J. Y. Yung, F. V. Lawrence, “Anallytical and Graphical Aids for the Fatigue Design of Weldments,” SAE Paper No. 850803, Society of Automotive Engineers, Warrendale, PA, 1985.
[24] H. P. Lieurade, “Fatigue in Welded Constructions,” Institute de Recherches de la siderurgie Franchise, pp. 19-49.
[25] T. R. Gurney, “Fatigue of Welded Structures,” Cambridge University Press, London, second ed., pp. 1, 1979.
[26] V. N. Drew, “Fatigue Considerations in Welded Structure,” SAE Technical Paper No. 820695, Society of Automotive Engineers, Warrendale, PA, 1982.
[27] 黃嘉彥,「工程結構之疲勞與破壞」,徐氏基金會,民國87。
[28] M. Matsuishi, T. Endo, “Fatigue of Metals Subjected to Varying Stress,” paper presented to Japan Society of Mechanical Engineers, Fukuoka, Japan, March 1968.
[29] American Society for Testing and Materials, Annual Book of ASTM Standards, Section 3: Metals Test Methods and Analytical Procedure, Vol. 03.01 - Metals-Mechanical Testing; Elevated and Low- Temperature Tests, ASTM, Philadelphia, 1986, pp. 836-848.
[30] J. A. Bannantine, J. J. Comer, J. L. Hardrock, Fundamentals of Metal Fatigue Analysis, Prentice Hall, 1990.
[31] 陳裕城,「機械零組件之加速耐久分析」,國立中央大學,碩士論文,民國八十七年六月。
[32] A. Wohler, “Uber die Festigkeitversuche mit Eisen und Stahl,” Zeitschrift fur Bauwesen, Vol. VIII, X, XIII, XVI, and XX, 1860/70, Englishaccount of this work is in Engineering, Vol. 11, 1871.
[33] D. V. Nelson, H. O. Fuchs, “Predictions of Cumulative Fatigue Damage UsingCondensed Load Histories, in Fatigue under Complex Loading: Analyses andExperiments,” The Society of Automotive Engineers, Vol. AE-6, pp. 163-187, 1977.
[34] ASTM-E8: Standard Test Methods for Tension Testing of Metallic Materials, ASTM, 2012.
[35] ASTM-E466: Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, ASTM, 2012.
[36] ASTM-E407: Standard Practice for Microetching Metals and Alloys, ASTM, 2012.
[37] CNS 2115: Method of Vickers Hardness Test, CNS, 1983