跳到主要內容

簡易檢索 / 詳目顯示

研究生: 游原恩
Yuan-En Yu
論文名稱: 5G行動通訊之濾波器組多載波傳輸設計及其多相位濾波器之可程式化邏輯陣列驗證
FBMC Transmission System Design and FPGA Evaluation of Polyphase Filter for 5G Mobile System
指導教授: 薛木添
Muh-Tian Shiue
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 70
中文關鍵詞: 濾波器組多相位濾波器
外文關鍵詞: FBMC, Polyphase Filter
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正交分頻多工器主要是利用所有的子載波正交特性進行調變,而多載波濾波器組(Filter Bank Multicarrier, FBMC)只需要維持和相鄰子載波之間的正交特性即可。因此,為了保持多載波濾波器組系統正交特性和提高頻寬使用率,將會使用偏移正交振幅調變(Offset Quadrature Amplitude Modulation, OQAM)。有鑒於採樣濾波器的良好振幅響應和微小的旁瓣干擾,本論文將使用頻率採樣濾波器。將偏移正交振幅調變和頻率採樣濾波器組結合我們將不再需要使用循環字首進而可以得到更好的頻寬使用率。
    偏移正交振幅調變(Offset Quadrature Amplitude Modulation, OQAM)會將輸入的正交振幅調變(Quadrature Amplitude Modulation, QAM)做實部和虛部分離,形成兩個新符元。分離過程中做2倍升採樣讓兩個符元錯開,之後在一個符元週期內分別以前半週期和後半週期完成傳輸。
    合成濾波器組(Synthesis filter bank)和分析濾波器組(Analysis filter bank)重點在於所使用的濾波器,因為所有濾波器組都是原型濾波器(prototype filter)的平移。本論文使用頻率採樣濾波器做為原型濾波器的設計,重疊因子(overlap factor)選擇為4使得原型濾波器的長度為反離散傅立葉轉換 (Inverse Discrete Fourier Transform, IDFT)、離散傅立葉轉換 ( Discrete Fourier Transform, DFT)的4倍。論文裡使用1024點IDFT,長度為4*1024的原型濾波器做為設計規格,為了降低運算複雜度和維持IDFT/DFT大小,這裡使用多相網路完成原型濾波器的設計。


    In OFDM, orthogonality must be ensured for all subchannels, while FBMC only requires orthogonality with adjacent subchannels. In order to fully exploit channel bandwidth, modulations in the subchannels must adapt to the neighbor orthogonality constraint, so Offset Quadrature Amplitude Modulation (OQAM) is used for this purpose. Frequency selective filter is accomplished by using longer and spectrally well-shaped prototype filters, and because of frequency selective filter, the sidelobe levels are lower comparing to OFDM. Combination of filter banks and OQAM modulation result in no need for guard time or cyclic prefix like OFDM, leading to higher bandwidth efficiency. In general, this technique is called Filter Bank Multicarrier (FBMC) technique.
    Offset Quadrature Amplitude Modulation (OQAM) is a complex-to-real conversion, where real and imaginary part of complex-valued symbol is separated to form two new symbols. Complex-to-real conversion increases the sampling rate by a factor of 2 which causes the two new symbol to stagger. The two new symbols will be transmitted separately in one symbol period.
    Frequency selective filter is a key element in complex modulated filter banks, because all synthesis and analysis filters are frequency shifted version of the prototype filter. Here we set the overlap factor of the prototype filter as 4, leading to filter length 4 times longer than DFT/IDFT. An IDFT of size 1024 is used, which leads to a 4*1024 filter length. In order to remain the size of DFT/IDFT and reduce computational complexity the polyphase network is used.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 2 第二章 濾波器組多載波介紹 3 2.1 正交分頻多工調變介紹 4 2.1.1 循環字首 5 2.1.2 正交分頻多工器電路架構 6 2.2 濾波器組多載波傳輸多工器介紹 9 2.2.1 偏移正交振幅調變(OQAM) 10 2.2.2 合成濾波器組與分析濾波器組 12 第三章 原型濾波器設計 15 3.1 頻率採樣濾波器 15 3.2 多相位濾波器推導 19 3.2.1 FBMC與OFDM比較 26 第四章 濾波器組多載波電路架構 27 4.1 濾波器多載波時間頻率響應 27 4.2 多相位濾波器與快速傅立葉轉換完整電路架構 37 第五章 多相位濾波器電路設計 40 5.1 傳送端電路設計 41 5.2 接收端電路設計 44 第六章 模擬結果與電路比較 47 6.1 定點數分析 47 6.2 模擬結果驗證 48 6.3 可程式化邏輯陣列驗證 50 第七章 結論與未來展望 53 參考文獻 54

    [1] D. Matiæ, “OFDM as a possible modulation technique for multimedia applications in the range of mm waves,” TUD-TVS, Oct. 1998J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightw. Technol., vol. 25, no. 1, pp. 131–138, Jan. 2008.
    [2] A.Peled and A. Ruiz, “Frequency domain data transmission using reduced computational complexity algorithms,” in Proc. IEEE International Conference on ICASSP, vol. 5, April, 1980, pp. 964-967.
    [3] FBMC-Primer_06-2010. http://www.ict-phydyas.org
    [4] Viholainen, A., Bellanger, M., and Huchard M. PHYDYAS project, deliverable D5.1: Prototype filter and structure optimization. http://www.ict-phydyas.org
    [5] P. P. Vaidyanathan, Multirate Systems And Filter Banks. 1993, Prentice-Hall
    [6] K.W. Martin, “Small Side-Lobe Filter Design for Data Communication Applications,” IEEE Transactions on Circuifs and Systems-II, vol. 45, no. 8, pp.1155-1161, Aug. 1998
    [7] S. Mirabbasi, and K. Martin, “Oversampled Complex-Modulated Transmultiplexer Filters with Simplified Design and Superior Stopbands,” IEEE Trans. Circuits Syst. II, vol. 50, No. 8, pp. 456-469, Aug. 2003.
    [8] Boroujeny, B.F.. OFDM versus fillter bank multicarrier. Signal Processing Magazine, IEEE, 28(3):92_112, May 2011.
    [9] Tobias Hidalgo Stitz, “Filter Bank Techniques for the Physical Layer in Wireless Communications”, Tampere University of Technology, 2010
    [10] Viholainen, A., Bellanger, M., and Huchard M. PHYDYAS project, deliverable D7.1: Compatibility of OFDM and FBMC systems and reconfigurability of terminals. http://www.ict-phydyas.org
    [11] Viholainen, A., Bellanger, M., and Huchard M. PHYDYAS project, deliverable D8.1: Application of the FBMC physical layer in a cognitive radio scenario. http://www.ict-phydyas.org
    [12] P. Siohan, C. Siclet, and N. Lacaille, "Analysis and design of OFDM/OQAM systems based on filterhank theory," IEEE Transactions on Signal Processing, vol. 50, pp. 1170-1 182, May 2002.
    [13] A. Viholainen, T. Hidalgo S., 1. Alhava, T. halainen, M Renfors, “Complex modulated critically sampled filter banks based cosine and sine modulation: IEEE International Symposium an Clrcuiu and Systems, ISCAS 2002, Vol. 1, pp 833 -836,2002
    [14] H. S. Malvar, “Extended lapped transform: properties, application, and fast algoithms”. IEEE Trammion on Sfpdprmessing. Vo1.40, No. 11, November 1992
    [15] T. Karp and N. J. Fliege, “Modified DFT filter banks with perfect reconstruction,” IEEE Trans. Circuits and Syst. II, vol. 46, pp.1404- 1414, Nov. 1999.
    [16] Henrique S. Malvar, Signal Processing with Lapped Transforms, Artech House, Inc., Norwood, MA, USA, 1992.
    [17] T. A. Ramstad and J. P. Tanem. “Cosine-modulated analysissynthesis filter bank with critical sampling and perfect reconstruction,” Pm. IEEE ICASSP-9I. Toronto, Canada, May 1991, pp. 1789-1792.
    [18] G. Cherubini, E. Eleftheriou, S. Ölçer, J. Cioffi, “Filter bank modulation techniques for very high-speed digital subscriber lines”, IEEE Commun. Magazine, pp. 98-104, May 2000.
    [19] B. Farhang-Boroujeny and C. H. Yuen, “Cosine modulated and offset QAM filter bank multicarrier techniques: A continuous-time prospect,” EURASIP J Appl Signal Process. (Special Issue on Filter Banks for Next Generation Multicarrier Wireless Communications), 2010, 10.1155/2010/165654, Article ID 165654, 16 pp.

    [20] P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1170–1183, May 2002.
    [21] P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM-OQAM systems based on filterbank theory,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1170–1183, May 2002
    [22] A. Viholainen, T. Ihalainen, T. H. Stitz, M. Renfors, and M. Bellanger, “Prototype filter design for filter bank based multicarrier transmission,” in Proc. 17th Eur. Signal Process. Conf., Glasgow, Scotland, Aug. 24–28, 2009, pp. 1359–1363

    QR CODE
    :::