跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林玟
Wen Lin
論文名稱: 氣泡於傾斜超疏水表面之運動行為
Sliding Bubble Motion along an Inclined Superhydrophobic Surface
指導教授: 曹恆光
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 100
中文關鍵詞: 氣泡超疏水表面
外文關鍵詞: bubble, superhydrophobic
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 小氣泡很容易吸附在固體表面是由於一般基材都存在著接觸角遲滯 (Contact angle hysteresis, CAH) ,一旦浮力克服了毛細力,小氣泡就可以在極低接觸角遲滯的基材表面下緩緩移動,並且,氣泡在接觸角遲滯很小的超疏水表面下形狀相當平坦。本研究製備了兩種能在水中維持穩定的超疏水基材,觀察小氣泡於其下的運動行為。實驗結果顯示,體積為3~15 ul的小氣泡在超疏水表面下之垂直移動速率大於氣泡自由浮升速度 (此時雷諾數約為400~800)。隨著基材傾斜角度增加,氣泡滑移速度存在最大值,前方投影面積也呈現單調遞增,阻力係數與自由浮升氣泡相同。而氣泡滑移時的阻力較小則歸因於氣泡在超疏水基材上有較小的前方投影面積。


    Tiny bubbles readily stick onto substrates due to contact angle hysteresis (CAH). A tiny bubble can slide slowly on a surface with ultralow CAH once buoyancy overcomes capillarity. The bubble shape is very flat on a superhydrophobic surface which possesses nearly vanishing CAH. A superhydrophobic surface with the stability in water is fabricated to observe the sliding motion of tiny bubbles. It is surprising to find that bubbles of 3~15 ul slide beneath the superhydrophobic surface at a vertical ascent rate faster than freely rising ones of Re~O(100). As the tilted angle increases, there exists a maximum velocity, the frontal area of the bubble rises monotonically, and the drag coefficient remains essentially the same as that of a freely rising bubble. Consequently, the small drag force associated with sliding bubbles is attributed to their substantially small frontal areas on superhydrophobic surfaces.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-2-1 氣泡之自由浮升運動 3 1-2-2 長型氣泡在封閉垂直管中之運動行為 12 1-2-3 氣泡在傾斜基材上之運動行為 14 1-3 研究動機與目的 22 第二章 基本原理 23 2-1 潤濕現象理論 23 2-1-1 楊氏方程式 (Young’s equation) 23 2-1-2 溫佐方程式 (Wenzel’s equation) 24 2-1-3 卡西方程式 (Cassie equation) 25 2-2 接觸角遲滯 (Contact angle hysteresis, CAH) 27 2-3 邊界層分離 (Boundary layer separation) 32 2-4 阻力 (Drag force) 32 2-4-1 形狀阻力 (Form drag) 33 2-4-2 阻力係數 (Drag coefficient, CD) 34 第三章 實驗介紹 36 3-1 實驗藥品及材料 36 3-2 實驗儀器 36 3-2-1 影像式接觸角量測儀 (Software-Controlled Multi Dosing System-DSA10) 36 3-2-2 全自動接觸角量測儀 (Operating Manual OCA 15EC) 39 3-2-3 高速攝影機 (Optronis CMOS (Cam Record450*2)) 40 3-2-4 數位相機 42 3-2-5 巨觀放大顯微量測系統 42 3-2-6 其他儀器設備 43 3-3 實驗流程 44 3-3-1 製備Lubricant-infused表面 44 3-3-2 製備氧化亞銅粉之超疏水基材 44 3-3-3 製備聚四氟乙烯之超疏水基材 45 3-3-4 利用高速攝影機觀察氣泡滑移速度 46 3-3-5 氣泡自由浮升速度 47 3-4 實驗結果分析 48 3-4-1 氣泡滑移速度計算 48 3-4-2 Mobility計算 48 3-4-3 前方投影面積 (Af) 計算 49 3-4-4 阻力係數 (CD) 計算 50 第四章 接觸角遲滯對氣泡運動行為之影響 51 4-1 接觸角遲滯 (Contact angle hysteresis, CAH) 51 4-2 一般基材表面氣泡的滑動行為 53 4-3 超低遲滯表面氣泡的滑動行為 55 第五章 超疏水表面上的氣泡運動行為 62 5-1 超疏水表面的潤濕行為 62 5-2 超疏水表面的氣泡滑移 63 5-2-1 氣泡在氧化亞銅超疏水基材下之運動行為 64 5-2-2 氣泡在PTFE超疏水基材下之運動行為 68 5-3 氣泡形變對氣泡運動行為之影響 74 第六章 結論 79 第七章 參考資料 80

    [1] A. Perron, L. I. Kiss and S. Poncsák, “An experimental investigation of the motion of single bubbles under a slightly inclined surface”, Int. J. Multiphase Flow 32, 606-622 (2006).
    [2] D. Bhaga and M. E. Weber, “Bubbles in viscous liquids: shape, wakes and velocities”, J. Fluid Mech. 105, 61-85 (1981).
    [3] G. P. Celata, M. Cumo, F. D’Annibale and A. Tomiyama, “Terminal bubble rising velocity in one-component systems”, In Proc. of 39th European Two-Phase Flow Group Meeting, Aveiro, Portugal (2001).
    [4] F. H. Garner and D. Hammerton, “Circulation inside gas bubbles”, Chem. Eng. Sci., 3, 1-11 (1954).
    [5] J. R. Grace, T. Wairegi and T. H. Nguyen, “Shapes and velocities of single drops and bubbles moving freely Through Immiscible Liquids”, Inst. Chem. Eng., 54, 167-173 (1976).
    [6] W. L. Haberman and R. K. Morton, “Davis Taylor Model Basin”, Rept. (1953).
    [7] M. A. R. Talaia, “Predicting the rise velocity of single gas slugs in stagnant liquid: influence of liquid viscosity and tube diameter”, In Proc. of the 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Edizioni ETS, Pisa, Italy (2004).
    [8] A. Tomiyama, “Grag, lift and virtual mass forces acting on a single bubble”, In Proc. of the 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Edizioni ETS, Pisa, Italy, (2004).
    [9] A. Tomiyama, G. P. Celata, S. Hosokawa, S. Yoshida, “Terminal velocity of single bubbles in surface tension force dominant regime”, In Proc. of 39th European Two-Phase Flow Group Meeting, Aveiro, Portugal (2001).
    [10] G. B. Wallis, “One-dimensional Two-phase Flow, Bubbly Flow”, McGraw-Hill, New York, USA (1969).
    [11] E. T. White and R. H. Beardmore, “The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes”, Chem. Engng. Sci. 17, 351-361 (1962).
    [12] M. A. R. Talaia, “Terminal velocity of a bubble rise in a liquid column”, World Acad. Sci. Eng. Technol. 28, 264-268 (2007).
    [13] A. Tomiyama, I. Kataoka, I. Zun and T. Sakaguchi, “Drag coefficients of single bubbles under normal and micro gravity conditions”, JSME Int. J. Ser. B 41, 472-479 (1998).
    [14] R. Clif, J. R. Grace and M. E. Weber, “Bubbles, Drops, and Particles”, Dover, New York, USA (1978).
    [15] I. Zun and J. Groselj, “The Structure of Bubble Non-Equilibrium Movement in Free-Rise and Agitated-Rise Conditions”, Nuclear Eng. Des. 163, 99-115 (1996).
    [16] M. Ishii and T. C. Chawla, “Local Drag Laws in Dispersed Two-Phase Flow”, ANL, USA (1979).
    [17] J. R. Grace, “Shapes and Velocities of Bubbles Rising in Finite Liquids”, Trans. Inst. Chem. Eng. 51, 116-120 (1973).
    [18] V. G. Levich, “Physicochemical Hydrodynamics”, Prentice-Hall, New York, USA (1962).
    [19] R. Clift and W. H. Gauvin, “The Motion of Particles in Turbulent Gas Streams”, British Chem. Eng. 16, 229 (1970).
    [20] F. N. Peebles, H. J. Garber, “Studies on the motion of gas bubble in liquid”, Chem. Eng. Prog. 49, 88-97 (1953).
    [21] P. G. Saffman, “On the rise of small air bubbles in water”, J. Fluid Mech. 1, 249-275 (1956).
    [22] R. A. Hartunian and W. R. Sears, “On the instability of small bubbles moving uniformly in various liquid”, J. Fluid Mech. 3, 27-47 (1957).
    [23] H. D. Mendelson, “The prediction of bubble terminal velocities from wave theory”, AIChE J. 13, 250-253 (1967).
    [24] K. Ellingsen and F. Risso, “On the rise of an ellipsoidal bubble in water: oscillatory paths and liquid-induced velocity”, J. Fluid Mech. 440, 235-268 (2001).
    [25] A. Tomiyama, G. P. Celata, S. Hosokawa and S. Yoshida, “Terminal velocity of single bubbles in surface tension force dominant regime”, Int. J. Multiphase Flow 28, 1497-1519 (2002).
    [26] M. Wu and M. Gharib, “Experimental studies on the shape and path of small air bubbles rising in clean water”, Phys. Fluids 14, L49-L52 (2002).
    [27] D. Ormie´res and M. Provansal, ‘‘Transition to turbulence in the wake of a sphere’’, Phys. Rev. Lett. 83, 80-83 (1999).
    [28] R. M. Davies and S. G. Taylor, “The mechanics of large bubbles rising through extended liquids and through liquids in tubes”, Proc. R. Soc. Ser. A 200, 375-390 (1950).
    [29] F. P. Bertherton, “The motion of long bubbles in tubes”, J. Fluid Mech. 10, 166-188 (1961).
    [30] H. L. Goldsmith and S. G. Mason, “The movement of single large bubbles in closed vertical tubes”, J. Fluid Mech. 14, 42-58 (1962).
    [31] C. E. Shosho and M. E. Ryan, “An experimental of the long bubbles in inclined tubes”, Chem. Eng. Sci. 56, 2191-2204 (2001).
    [32] K. H. Bendiksen, “An experimental investigation of the motion of long bubbles in inclined tubes” Int. J. Multiphase Flow 10, 467-483 (1984).
    [33] E. E. Zukoski, “Influence of viscosity, surface tension and inclination angle on motion of long bubbles in closed tubes”, J. Fluid Mech. 25, 821-837 (1966).
    [34] P. L. Spedding and V. T. Nguyen, “Bubble rise and liquid content in horizontal and inclined tubes”, Chem. Eng. Sci. 33, 987-994 (1978).
    [35] T. Maxworthy, “Bubble rise under an inclined plate”, J. Fluid Mech. 229, 659-674 (1991).
    [36] J. J. J. Chen, Z. Jianchao, Q. Kangxing, B. J. Welch and M. P. Taylor, “Rise velocity of air bubbles under a slightly inclined planed submerged in water”, The Fifth Asian Congress of Fluid Mechanics, 1173-1176 (1992).
    [37] J. Masliyah, R. Jauhari and M. Gray, “Drag coefficients for air bubbles rising along an inclined surface”, Chem. Eng. Sci. 49, 1905-1911 (1994).
    [38] A. Perron, L. I. Kiss and S. Poncsa´k, “Regimes of the movement of bubbles under the anode in an aluminum electrolysis cell”, TMS Light Metals, 565-570 (2005).
    [39] T. Maxworthy, C. Gnann, M. Ku¨ rten and F. Durst, “Experiments on the rise of air bubbles in clean viscous liquids”, J. Fluid Mech. 321, 421-441 (1996).
    [40] H. R. Pruppacher and J. D. Klett, “Microphysics of clouds and precipitation”, D. Reidel, Boston, USA (1979).
    [41] S. Hartland and R. W. Hartley, “Axisymmetric Fluid–Liquid Interfaces: tables giving the shape of sessile and pendant drops and external menisci, with examples of their use”, Elsevier Scientific, Amsterdam, Netherlands (1976).
    [42] S. Fortin, M. Gerhardt and A. J. Gesing, “Physical modelling of bubble behaviour and gas release from aluminum reduction cell anodes”, TMS Light Metals, 721-741 (1984).
    [43] A. Solheim and J. Thonstad, “Model cell studies of gas induced resistance in Hall–Heroult cells”, Light Metals, 397-403 (1986).
    [44] J. Zoric and A. Solheim, “On gas bubbles in industrial aluminum cells with prebaked anodes and their influence on the current distribution”, J. Appl. Electrochem. 30, 787-794 (2000).
    [45] A. Haupin, “Scanning reference electrode for voltage contours in aluminum smelting cells”, J. Met. 23, 46-49 (1971).
    [46] L. I. Kiss, S. Poncsa´k, D. Toulouse, A. Perron, A. Liedtke and V. Mackowiak, “Detachment of bubbles from their nucleation sites”, TMS Light Metals, Multiphase Phenomena and CFD Modeling and Simulation in Materials Processes, 159-167 (2004).
    [47] T. Young, “An Essay on the Cohesion of Fluids”, Philos. Trans. R. Soc. Lon-don 95, 65-87 (1805).
    [48] R. N. Wenzel, “Resistance of solid surfaces to wetting by water”, Ind. Eng.Chem. 28, 988-994 (1936).
    [49] A. Cassie and S. Baxter, “Wettability of porous surfaces”, Trans. Faraday Soc. 40, 546-551 (1944).
    [50] Y. Uyama, H. Inoue, K. Ito, A. Kishida and Y. Ikada, “Comparison of Different Methods for Contact Angle Measurement”, J. Colloid Interface Sci. 141, 275-279 (1991).
    [51] O. N. Tretinnikov and Y. Ikada, “DynamicWetting and Contact Angle Hysteresis of Polymer Surface Studied with the Modified Wilhelmy Balance Method” Langmuir 10, 1606-1614 (1994).
    [52] V. Berejnov and R. E. Thorne, “Effect of Transient Pinning on Stability of Drops Sitting on An Inclined Plane”, Phys. Rev. E 75, 066308 (2007).
    [53] De Gennes, “A model for contact angle hysteresis”, J. Chem. Phys. 81, 552 (1984).
    [54] S. Yamada and J. Israelachvili, “Friction and Adhesion Hysteresis of Fluorocarbon Surfactant Monolayer-Coated Surfaces Measured with the Surface Forces Apparatus”, J. Phys. Chem. B 102, 234-244 (1998).
    [55] S. J. Hong, F. M. Chang, T. H. Chou, S. H. Chan, Y. J. Sheng and H. K. Tsao, “Anomalous Contact Angle Hysteresis of a Captive Bubble: Advancing Contact Line Pinning”, Langmuir 27, 6890-6896 (2011).

    QR CODE
    :::