| 研究生: |
陳政揚 Jheng Yang Chen |
|---|---|
| 論文名稱: |
過渡金屬摻雜單層石墨氮化碳之氫氣儲存效能之第一原理計算 First-Principles Study of Hydrogen Storage in Transition Metal-Doped Monolayer g-C3N4 |
| 指導教授: |
張博凱
Bor Kae Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 第一原理計算 、石墨相氮化碳 、氫氣儲存 、過渡金屬摻雜 |
| 外文關鍵詞: | First-principles calculations, Graphitic carbon nitride, Hydrogen storage, Transition metal doping |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球氣候變遷和能源危機的加劇,氫能作為一種清潔的替代能源在應對這些挑戰中扮演著重要的角色。氫氣儲存技術是氫能應用的核心之一,儲氫材料的發展對於氫能的實際應用至關重要。石墨相氮化碳 (g-C₃N₄)作為一種二維材料,具有優異的化學穩定性、高比表面積和環保特性,成為氫氣儲存領域的研究熱點。然而,純 g-C₃N₄ 的氫氣儲存性能受到其較大的帶隙限制,這使得其氫氣吸附和解離過程的效率較低。為了改善這一問題,許多研究指出,通過摻雜過渡金屬可顯著提升 g-C₃N₄ 的儲氫能力。
本研究通過基於密度泛函理論(DFT)的第一性原理計算,系統地探討了純 g-C₃N₄ 及摻雜過渡金屬(Pd、Pt)後的氫氣吸附行為、電子結構變化以及氫氣儲存性能。計算結果顯示,原始 g-C₃N₄ 的帶隙為 1.175 eV,其顯示出強烈的半導體特性,限制了氫氣分子與材料的有效相互作用。氫氣傾向於以垂直方式吸附於氮原子上,這樣的吸附模式雖然穩定,但其效率仍受到帶隙過大的限制。
進一步探討過渡金屬(Pd、Pt)摻雜對氫氣儲存性能的影響。研究結果顯示,過渡金屬的引入對 g-C₃N₄ 的結構與形貌未產生明顯影響,並確定了最穩定的過渡金屬摻雜位置及氫分子的最佳吸附位點。 此外,此計算分析了不同的吸附距離與構型,並透過能隙計算與電荷轉移分析,證實材料由半導體轉變為金屬導體結構,且吸附過程主要受化學吸附機制主導。這些結果證實,過渡金屬摻雜可有效提升 g-C₃N₄ 的氫氣儲存能力,為先進氫氣儲存材料的設計提供了寶貴的理論依據。
With the increasing global climate change and energy crisis, hydrogen energy, as a clean alternative energy source, plays a crucial role in addressing these challenges. Hydrogen storage technology is one of the core aspects of hydrogen energy applications, and the development of hydrogen storage materials is essential for the practical use of hydrogen energy. Graphitic carbon nitride (g-C₃N₄), as a two-dimensional material, has attracted significant research attention in the hydrogen storage field due to its excellent chemical stability, high specific surface area, and environmental friendliness. However, the hydrogen storage performance of pure g-C₃N₄ is limited by its large band gap, which results in low efficiency for hydrogen adsorption and dissociation processes. To address this issue, many studies have pointed out that doping with transition metals can significantly enhance the hydrogen storage capacity of g-C₃N₄.
This study systematically investigates the hydrogen adsorption behavior, electronic structure changes, and hydrogen storage performance of pure g-C₃N₄ and transition metal-doped (Pd, Pt) systems using density functional theory (DFT) based first-principles calculations. The calculation results show that the band gap of pure g-C₃N₄ is 1.175 eV, demonstrating strong semiconductor properties, which limits the effective interaction between hydrogen molecules and the material. Hydrogen tends to adsorb perpendicularly to nitrogen atoms, and while this adsorption mode is stable, its efficiency is still limited by the large band gap.
Further exploration of the impact of transition metal (Pd, Pt) doping on hydrogen storage performance reveals that the introduction of transition metals does not significantly affect the structure or morphology of g-C₃N₄, and the most stable doping sites for the transition metals and the optimal hydrogen adsorption sites were identified. Additionally, different adsorption distances and configurations were analyzed, and through band gap calculations and charge transfer analysis, it was confirmed that the material undergoes a transition from semiconductor to metallic conductor structure, with the adsorption process mainly governed by chemisorption mechanisms. These results confirm that transition metal doping can effectively enhance the hydrogen storage capacity of g-C₃N₄, providing valuable theoretical guidance for the design of advanced hydrogen storage materials.
1. Moradi, R. and K.M. Groth, Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. International Journal of Hydrogen Energy, 2019. 44(23): p. 12254-12269.
2. Ong, W.-J., et al., Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chemical Reviews, 2016. 116(12): p. 7159-7329.
3. Liebig, J.v., About some nitrogen compounds. Ann. Pharm, 1834. 10(10): p. 10.
4. Xia, P., et al., Synthesis of g-C3N4 from Various Precursors for Photocatalytic H2 Evolution under the Visible Light. Crystals, 2022. 12(12): p. 1719.
5. Zhang, Y., et al., Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci Rep, 2013. 3: p. 1943.
6. Wang, X., et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 2009. 8(1): p. 76-80.
7. Samsudin, M.F.R., S. Sufian, and N. Bacho, Recent Development of Graphitic Carbon Nitride-Based Photocatalyst for Environmental Pollution Remediation, in Nanocatalysts, I. Sinha and M. Shukla, Editors. 2018, IntechOpen: Rijeka.
8. Ismael, M., et al., Graphitic carbon nitride synthesized by simple pyrolysis: role of precursor in photocatalytic hydrogen production. New Journal of Chemistry, 2019. 43(18): p. 6909-6920.
9. Usman, M.R., Hydrogen storage methods: Review and current status. Renewable and Sustainable Energy Reviews, 2022. 167: p. 112743.
10. Niaz, S., T. Manzoor, and A.H. Pandith, Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews, 2015. 50: p. 457-469.
11. Züttel, A., Hydrogen storage methods. Naturwissenschaften, 2004. 91(4): p. 157-172.
12. Orimo, S.-i., et al., Complex Hydrides for Hydrogen Storage. Chemical Reviews, 2007. 107(10): p. 4111-4132.
13. Zhao, W., et al., Activated carbons doped with Pd nanoparticles for hydrogen storage. International Journal of Hydrogen Energy, 2012. 37(6): p. 5072-5080.
14. Schaefer, S., et al., Physisorption, chemisorption and spill-over contributions to hydrogen storage. International Journal of Hydrogen Energy, 2016. 41(39): p. 17442-17452.
15. Raja K, K., T. Anusuya, and V. Kumar, DFT study of hydrogen interaction with transition metal doped graphene for efficient hydrogen storage: effect of d-orbital occupancy and Kubas interaction. Physical Chemistry Chemical Physics, 2023. 25(1): p. 262-273.
16. Ikot, I.J., et al., Hydrogen storage capacity of Al, Ca, Mg, Ni, and Zn decorated phosphorus-doped graphene: Insight from theoretical calculations. International Journal of Hydrogen Energy, 2023. 48(36): p. 13362-13376.
17. Panigrahi, P., et al., Remarkable improvement in hydrogen storage capacities of two-dimensional carbon nitride (g-C3N4) nanosheets under selected transition metal doping. International journal of hydrogen energy, 2020. 45(4): p. 3035-3045.
18. Chen, Z., et al., Computational Screening of Efficient Single-Atom Catalysts Based on Graphitic Carbon Nitride (g-C3N4) for Nitrogen Electroreduction. Small Methods, 2019. 3(6): p. 1800368.
19. Li, S.-L., et al., Potential of transition metal atoms embedded in buckled monolayer g-C3N4 as single-atom catalysts. Physical Chemistry Chemical Physics, 2017. 19(44): p. 30069-30077.
20. Hoang, T.K.A. and D.M. Antonelli, Exploiting the Kubas Interaction in the Design of Hydrogen Storage Materials. Advanced Materials, 2009. 21(18): p. 1787-1800.
21. Argaman, N. and G. Makov, Density functional theory: An introduction. American Journal of Physics, 2000. 68(1): p. 69-79.
22. Parr, R.G., Density Functional Theory, in Electron Distributions and the Chemical Bond, P. Coppens and M.B. Hall, Editors. 1982, Springer US: Boston, MA. p. 95-100.
23. Takada, Y., 1.12 - Theory of Superconductivity in Graphite Intercalation Compounds, in Comprehensive Semiconductor Science and Technology, P. Bhattacharya, R. Fornari, and H. Kamimura, Editors. 2011, Elsevier: Amsterdam. p. 410-426.
24. The Hohenberg-Kohn Theorems, in A Chemist's Guide to Density Functional Theory. 2001. p. 33-40.
25. The Kohn-Sham Approach, in A Chemist's Guide to Density Functional Theory. 2001. p. 41-64.
26. Roothaan, C.C.J., Self-Consistent Field Theory for Open Shells of Electronic Systems. Reviews of Modern Physics, 1960. 32(2): p. 179-185.
27. Nakamachi, E., et al. Three-scale process-crystallographic analysis of a new biocompatible piezoelectric material MgSiO3 generation. in 2010 2nd International Conference on Computer Technology and Development. 2010.
28. Fabiano, E., L.A. Constantin, and F. Della Sala, Two-Dimensional Scan of the Performance of Generalized Gradient Approximations with Perdew–Burke–Ernzerhof-Like Enhancement Factor. Journal of Chemical Theory and Computation, 2011. 7(11): p. 3548-3559.
29. Kurth, S., M.A.L. Marques, and E.K.U. Gross, Density-Functional Theory, in Encyclopedia of Condensed Matter Physics, F. Bassani, G.L. Liedl, and P. Wyder, Editors. 2005, Elsevier: Oxford. p. 395-402.
30. Rehn, A., Benchmarking and evaluation of plane waves DFT-calculations in pure magnesium in its hexagonal closed packed structure. 2024, Technische Universität Dresden: Köln.
31. Phillips, J.C., Energy-Band Interpolation Scheme Based on a Pseudopotential. Physical Review, 1958. 112(3): p. 685-695.
32. Filippetti, A. and G.B. Bachelet, Pseudopotential Method, in Encyclopedia of Condensed Matter Physics, F. Bassani, G.L. Liedl, and P. Wyder, Editors. 2005, Elsevier: Oxford. p. 431-440.
33. Murphy, S.T., Atomistic simulation of defects and diffusion in oxides. 2009, Imperial College London (University of London).
34. Segall, M.D., et al., First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 2002. 14(11): p. 2717.
35. Delley, B., DMol3 DFT studies: from molecules and molecular environments to surfaces and solids. Computational Materials Science, 2000. 17(2): p. 122-126.
36. BIOVIA Materials Studio Forcite – Datasheet. Dassault Systèmes.
37. Momma, K. and F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 2008. 41(3): p. 653-658.
38. Clark, S.J., et al., First principles methods using CASTEP. Zeitschrift für Kristallographie - Crystalline Materials, 2005. 220(5-6): p. 567-570.
39. Segall, M.D., et al., CASTEP User’s Guide. 2002.
40. Payne, M.C., et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 1992. 64(4): p. 1045-1097.
41. Perdew, J.P. and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 1992. 45(23): p. 13244-13249.
42. Swart, M. and M. Gruden, Spinning around in Transition-Metal Chemistry. Accounts of Chemical Research, 2016. 49(12): p. 2690-2697.
43. Calle-Vallejo, F., et al., Fast prediction of adsorption properties for platinum nanocatalysts with generalized coordination numbers. Angew Chem Int Ed Engl, 2014. 53(32): p. 8316-9.
44. Chai, H., et al., Single-Atom Anchored g-C3N4 Monolayer as Efficient Catalysts for Nitrogen Reduction Reaction. Nanomaterials, 2023. 13(8): p. 1433.
45. Andersson, M.P., Density functional theory with modified dispersion correction for metals applied to molecular adsorption on Pt(111). Physical Chemistry Chemical Physics, 2016. 18(28): p. 19118-19122.
46. Janthon, P., et al., Adding Pieces to the CO/Pt(111) Puzzle: The Role of Dispersion. The Journal of Physical Chemistry C, 2017. 121(7): p. 3970-3977.
47. Quantum, E.D., mm_dispersion.f90 – Module for Dispersion Correction.
48. Zhu, B., et al., First-principle calculation study of tri-s-triazine-based g-C3N4: A review. Applied Catalysis B: Environmental, 2018. 224: p. 983-999.
49. Zhang, X., et al., Spin-polarization and ferromagnetism of graphitic carbon nitride materials. Journal of Materials Chemistry C, 2013. 1(39): p. 6265-6270.
50. Sun, C., et al., Synthesis of 0D SnO2 nanoparticles/2D g-C3N4 nanosheets heterojunction: improved charge transfer and separation for visible-light photocatalytic performance. Journal of Alloys and Compounds, 2021. 871: p. 159561.
51. Zheng, Y., et al., Molecule-Level g-C3N4 Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions. Journal of the American Chemical Society, 2017. 139(9): p. 3336-3339.
52. Gao, G., et al., Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide. Journal of the American Chemical Society, 2016. 138(19): p. 6292-6297.
53. Qiao, B., et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 2011. 3(8): p. 634-641.
54. Yildirim, T. and S. Ciraci, Titanium-Decorated Carbon Nanotubes as a Potential High-Capacity Hydrogen Storage Medium. Physical Review Letters, 2005. 94(17): p. 175501.
55. Zhang, W., et al., Sequential hydrogen storage in phosphorene nanotubes: A molecular dynamics study. International Journal of Hydrogen Energy, 2023. 48(62): p. 23909-23916.
56. Dong, F., et al., Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. Journal of Materials Chemistry, 2011. 21(39): p. 15171-15174.
57. Borlido, P., et al., Exchange-correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning. npj Computational Materials, 2020. 6(1): p. 96.
58. Tran, F. and P. Blaha, Importance of the Kinetic Energy Density for Band Gap Calculations in Solids with Density Functional Theory. The Journal of Physical Chemistry A, 2017. 121(17): p. 3318-3325.
59. Structure and electronic structure of S-doped graphitic C3N4 investigated by density functional theory. Chinese Physics B, 2012. 21(10): p. 107101.
60. Züttel, A., Materials for hydrogen storage. Materials Today, 2003. 6(9): p. 24-33.
61. Kubas, G.J., et al., Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2) (M = molybdenum or tungsten; R = Cy or isopropyl). Evidence for a side-on bonded dihydrogen ligand. Journal of the American Chemical Society, 1984. 106(2): p. 451-452.
62. Hales, J.J., Exploring the Kubas Interaction in Transition Metal Hydrides for Hydrogen Storage Applications Using Computational Methods. 2020, The University of Manchester (United Kingdom): England. p. 373.
63. Tierney, H.L., et al., Hydrogen Dissociation and Spillover on Individual Isolated Palladium Atoms. Physical Review Letters, 2009. 103(24): p. 246102.
64. Nair, A.A.S. and R. Sundara, Palladium Cobalt Alloy Catalyst Nanoparticles Facilitated Enhanced Hydrogen Storage Performance of Graphitic Carbon Nitride. The Journal of Physical Chemistry C, 2016. 120(18): p. 9612-9618.
65. Gross, A., Hydrogen dissociation on metal surfaces – a model system for reactions on surfaces. Applied Physics A, 1998. 67(6): p. 627-635.
66. Aireddy, D.R. and K. Ding, Heterolytic Dissociation of H2 in Heterogeneous Catalysis. ACS Catalysis, 2022. 12(8): p. 4707-4723.
67. Righi, G., R. Magri, and A. Selloni, H2 Dissociation on Noble Metal Single Atom Catalysts Adsorbed on and Doped into CeO2 (111). The Journal of Physical Chemistry C, 2019. 123(15): p. 9875-9883.
68. Gao, P., Z. Liu, and F. Zhang, Computational Evaluation of Li-doped g-C2N Monolayer as Advanced Hydrogen Storage Media. International Journal of Hydrogen Energy, 2022. 47(6): p. 3625-3632.