| 研究生: |
陳哲楷 Zhe-kai chen |
|---|---|
| 論文名稱: |
Hardy spaces associated to para-accrective functions Hardy spaces associated to para-accrective functions |
| 指導教授: |
林欽誠
Chin-cheng Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | Calderon-Zygmund算子 、哈地空間 、仿可接收函數 |
| 外文關鍵詞: | Calderon-Zygmund operator, para-accrective function, Hardy spaces |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文主要目的,是證明 Calderon-Zygmund 算子在和 para-accretive 函數相關的 Hardy 空間 H^{p}_{b} 上的有界性。在第二節裡,我們首先建構了主要的工具,一個離散形式的 Calderon 表示定理。而在第三節內我們則利用 Little-Paley g 函數定義了和 para-accretive 函數相關的 Hardy 空間。接者透過Plancherel-Polya 型的不等式去保證這空間的定義是合理的。進第一步地,在最後一節我們證明了當 Calderon-Zygmund 算子加上T^{*}(b)=0 這條件下,即能保證這個算子是從經典的 H^{p} 到H^{p}_{b} 是有界的。
In this paper, the main purpose is to claim the boundedness of the Calderon-Zygmund operator on the Hardy spaces H^{p}_{b} associated to para-accretive functions b for frac{n}{n+varepsilon}<pleq1. We first construct the main tool in section 2, the discrete version Calderon-type reproducing formula. In section 3, we established the Hardy spaces H^{p}_{b} associated to para-accretive functions b is defined by the Little-Paley g function. Moreover, the new Hardy spaces H^{p}_{b} is well-defined by the Plancherel-Polye type inequality. Further, in last
section, we show that the boundedness of the Calderon-Zygmund operator T with T^{*}(b)=0 from the classical Hardy spaces H^{p} to H^{p}_{b} for frac{n}{n+varepsilon}<pleq1.
[1] Y.Han, Calderon-type reproducing formula and the Tb theorem, Rev. Mat. Iberoamericana 10 (1994).
[2] Y.Han,M.Lee and C.Lin, Hardy space and the Tb theorem, Geom. 14 (2004).
[3] David, G.,Journe, J. L. and Semmes, S.,, Operateurs de Calderon Zygmund, fonctions para accretives et inter-
polation., Revista Mat. Iberoamericana 1 (1985).
[4] Donggao Deng, and Y.Han,, Littlewood Paley analysis on spaces homogeneous type.
[5] C.Fe®erman and E.M.Stein,, Hp spaces of several variables, Acta Math. 129 (1972), 137-193.