| 研究生: |
陳俊樺 Chun-hua Chen |
|---|---|
| 論文名稱: |
基於高階幾何特徵及卡爾曼協同追蹤之監控系統 Smart Surveillance System Based on High Level Features and Co-tracking by Kalman Filter |
| 指導教授: |
蔡宗漢
Tsung-Han Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 協同追蹤 、監控系統 、幾何特徵 |
| 外文關鍵詞: | surveillance system, co-tracking, geometric feature |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著時代的進步,安全也隨著被大家所重視。然而在現今社會裡,自動化與智慧型的系統也成為目前科技所追求的。監控系統的環境可應用在各個環境下,例如機場,高速公路以及校園等等…。在這些環境中,常會有複雜的情形發生,例如多人交錯、多人並肩走在一起或者人的靜止,這些情況在追蹤都會是一個很嚴重的問題。因此如何有效解決以上所提的三大問題在追蹤這方面一直是很重要的議題。
在此論文中,為了解決含有以上所述的一些問題,擷取重要的幾何特徵就成為了達到精確的追蹤系統的主要方法之一。擷取幾何特徵的方法運用一個簡單且直覺的影像處理所獲得。然而幾何擷取特徵的特性含有唯一性及具有意義的。另外,在追蹤的系統上,運用這兩個重要的幾何特徵,並行的使用追蹤演算法,增加追蹤的準確度。最後在靜止物件上,同樣使用了這樣的幾何特徵,解決靜止物件所產生的相關問題,減少物件遺失的情形。實驗顯示提出的方法在上述的三個問題都能有好的結果。除此之外,為了顯示提出方法有效的改善問題,將結果轉為數據,並與另外兩個方法做比較。實驗的影片也採用被採信的基準影片PETS2001、PETS2006和PETS2007。
除了軟體上的開發,也將其實現在DM642開發平台上,此系統利用一監視器傳輸到DM642開發板上進行追蹤處理,再經由液晶螢幕顯示出來。在DM642平台上跑了一實例來驗證結果,並評估其效能。
Tracking multiple targets in complex situation is challenging. The difficulties are tackled multiple targets with occlusions, especially when multiple involved targets are grouped, moving together in appearance ,and target is static. These problems are still focused in recent years.
In this paper, we present a multiple targets tracking system for the management of occlusion problem. The proposed algorithm introduces a geometric shape co-tracking strategy. It decomposes targets into geometric shapes located on body and head parts based on reasonable target geometry consideration. Features selected from the decomposed geometric shapes then can be used to track targets through intersections such as occlusion. Projection histogram and ellipsoid shape model are adopted to manage decomposed geometric shapes corresponding to each target. Tracking is done through Kalman filtering process with high efficient and low complexity issue. The problem of sleeping object is handled by mean shift with no foreground needed. Experimental results show that the occlusion of grouped targets can be tracked successfully on recent challenging benchmark sequences.
The proposed method is also implemented in DM642. The input video is from a camera transfer to DM642, then the input video has been through tracking process and output the video in LCD. To verify the system, a realistic video has been shown also.
[1] A. Yilmaz, O. Javed and M. Shah, "Object Tracking: A Survey", ACM Journal of Computing Surveys, Dec 2006.
[2] Comaniciu, D., Ramesh, V., and Meer, P. “Kernel-based Object Tracking”, IEEE Trnas. Pattern Anal. Machine Intell., 2003.
[3] Isard, M. and MacCormick, J. “Bramble: A Bayesian Multiple-blob Tracker”, IEEE International Conference on Computer Vision, 2001.
[4] Black, M. and Jepson, A. “Eigentracking: Robust Matching and Tracking of Articulated Objects Using A View-based representation” Int. J. Comput. Vision, 1998
[5] Avidan, S. “Support Vector Tracking”, IEEE Conf. on Computer Vision and Pattern Recognition, 2005.
[6] Kang, J., Cohen, I., and Medioni, G., “Object Reacquisition Using Geometric Invariant Appearance Model” International Conference on Pattern Recognition, 2004.
[7] Chen, Y., Rui, Y., and Huang, T. “JPDAF based HMM for Real-time Contour Tracking” IEEE Conf. on Computer Vision and Pattern Recognition, 2001.
[8] J. Xu, “Decomposition of convex polygonal morphological structuring elements into neighborhood subsets”, IEEE Trans. Pattern Anal. Machine Intell., vol. 13, pp. 153–162, Feb. 1991.
[9] J. Xu, “Morphological decomposition of 2-D binary shapes into conditionally maximal convex polygons” , IEEE Trans. Pattern Anal. Machine Intell., 1991.
[10] Texas Instruments, “Code Composer Studio User’s Guide,” Literature number: SPRU328B, February 2000.
[11] Texas Instruments, “TMS320C6000 Optimizing Compiler User’s Guide,” Literature number: SPRU187L, May 2004.
[12] Texas Instruments, “TMS320C64x+ DSP Cache User''s Guide,” Literature number: SPRU862B, February 2009.
[13] P. Kumar, S. Ranganath, K. Sengupta, and H. Weimin, “Cooperative Multitarget tracking with efficient split and merge Handling”, IEEE Trans. Circuits and systems for video technology, 2006.
[14] H. Liu, L. Zhang, Z. Yu, H. Zha, Y. Shi, “Collaborative Mean Shift Tracking Based on Multi-Cue Integration and Auxiliary Objects”, IEEE trans. Signal processing, 2007
[15]Smith, K., Gatica-Perez, D., Odobez, J.-M. and Ba, S., “Evaluating Multi-object Tracking”, IEEE Conf. on Computer Vision and Pattern Recognition, 2005.
[16] T.-H. Tsai, W.-T. Sheu and C.-Y. Lin, "Foreground Object Detection based on Multi-model Background Maintenance ", IEEE International Symposium on Multimedia, ISM ’07, Taiwan , 2007.