跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭孟勳
Meng-Hsun Cheng
論文名稱: 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
Physical properties of Poly(propylene-co-norbornene) Copolymer using Metallocene Catalyst
指導教授: 諸柏仁
Po-Jen Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 88
語文別: 中文
論文頁數: 154
中文關鍵詞: 原冰烯丙烯結晶動力學結晶結晶型微結構
外文關鍵詞: norbornene, propylene, crystallization kinetics, crystal, crystal form, mircrostructure
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


  • In our studies, the physical properties of poly(propylene-co-norbornene) COC copolymers were investigated which were synthesized using Metallocene catalyst (rac-bis(Ind)2EtZrCl2) and MAO as a co-catalyst. The crystalline and non-crystalline copolymers could be synthesized by different copolymerization procedures. First, the activity of copolymer dramatically decreases with increasing feeding norbornene amount, however, the activity increases with increasing copolymerization temperature. The glass transition temperature of copolymer is affected by two factors: the norbornene content in copolymer and the isotacticity of polypropylene. The microstructure of copolymer is mainly constituent with isolated and alternating norbornene sequence, which is not varied much with increasing norbornene content. Norbornene diades or longer norbornene block sequence probably exists in copolymer which is polymerized under higher reaction temperature. The equilibrium melting point is about 163oC which is determined by Hoffman-Weeks plot. No matter in isothermal or non-isothermal crystallization kinetics, the crystallization rate of isotactic polypropylene homopolymer is higher than copolymer, and the more norbornene content the lower crystallization rate will be obtained. Regime transition occurs in ipp homopolymer and copolymers, and the change in slope approaches about twofold. The fold surface energy(σe) and the work of chain folding(q) of copolymer is about 4-5 folds higher than homopolymer. Finally, the crystal form of polypropylene is stillα-form which is not varied with introducing norbornene unit in polymer chain or faster cooling rate.

    表目錄 Table 4-1-4. Effect of copolymerization reaction confiditions on activity of npx series COC copolymer……………………………..61 Table 4-4-2. Effect of norbornene concentration on activity of nxp series COC copolymers and their molecular weight……………..62 Table 4-1-3. Molecular characteristics and thermal properties of ipp and nxp series COC copolymer. ………………………………63 Table 4-1-4. Effect of copolymerization temperature on activity of npRax series copolymer. ………………………………………….64 Table 4-1-5. Effect of norbornene concentration on activity of npRanx series COC copolymer. …………………………………...65 Table 4-1-6. Monomer reactivity ration of Metallocene catalyzed norbornene base copolymers………………………………66 Table 4-2-1. Molecular charactiristics and thermal properties of all smaples. …………………………………………………...85 Table 4-3-1. Molecular characteristics and thermal properties of all samples. ………………………………………………….117 Table 4-3-2. Avrami exponents of all samples. ………………………..118 Table 4-3-3. Overall crystallization rate (K) of all samples……………119 Table 4-3-4. Crystallization half time of all samples…………………..120 Talbe 4-3-5. Growth kinetics parameters based on nucleation theory…121 Table 4-4-1. Parameters of non-isothermal crystallization process of ipp………………………………………………………...141 Table 4-4-2. Parameters of non-isothermal crystallization process of n2p………………………………………………………..141 Table 4-4-3. Parameters of non-isothermal crystallization process of n4p………………………………………………………..142 Talbe 4-4-4. Parameters of non-isothermal crystallization process of n5p………………………………………………………..142 圖目錄 Figure 1-1. New uniform Metallocene catalyst family………………….12 Figure 2-1-1. F1 as function of f1 for the values of r1 indicated on the curves……………………………………………………..36 Figure 2-1-2. Calculated composition plots fore copolymer systems showing increasing tendency toward alternation………...36 Figure 2-1-3. Calculated composition plots for compolymization systems with r1=r2>1………………………………………………37 Figure 2-1-4. Calculated composition plots for copolymerization systems for r1=0.5 and varied r2 as shown………………………...37 Figure 2-1-5. Schematic representation of change in free energy for the nucleation process during polymer crystallzation………..38 Figure 2-1-6. Model of the growth of a lamellar polymer crystal through the successive laying down of adjacent molecular strands38 Figure 4-1-1. 3D plot of temperature and ratio([Al]/[Zr]) vs. activity of npx series COC copolymer……………………………….67 Figure 4-1-2. The variation of activity and Tg with NB content of nxp series COC copolymer……………………………………68 Figure 4-1-3. The relationship between melting point and NB content of nxp series COC copolymer……………………………….69 Figure 4-1-4. The variation of activity and Tg with reaction temperature of npRax series COC copolymer…………………………70 Figure 4-1-5. The variation of activity and Tg with NB content of npRanx series COC copolymer……………………………………71 Figure 4-1-6. F1(instantaneous copolymer composition) as a function of f1(feed mole fraction) of npRanx series copolymer……...72 Figure 4-2-1. 1D 13C-NMR spectrum of isotactic polypropylene………86 Figure 4-2-2. 1D 1H-NMR spectrum of copolymer npRan6…………...87 Figure 4-2-3. 1D 13C-NMR spectrum of npx series COC copolymer (np7)…………………………….. ………………………88 Figure 4-2-4. 1D 13C-NMR spectrum of nxp series COC copolymer (n2p) ……………………………………………………..89 Figure 4-2-5. 1D 13C-NMR spectrum of npRanx seires COC copolymers……………………………………………….90 Figure 4-2-6. DEPT-90 NMR spectrum showing only methine carbon resonances of COC copolymer npRan6………………….91 Figure 4-2-7. DEPT-135 NMR spectrum showing methyl, methine resonances as positive signals and methylene resonances as negative signals of COC copolymer……………………..92 Figure 4-2-8. 1D 1H-NMR spectrum of COC copolymers npRan6 and npRan7…………………………………………………..93 Figure 4-2-9. Heteronuclear multiple quantum coherence(HMQC) spectrum of COC copolymer npRan6……………………94 Figure 4-2-10. Heteronuclear multiple quantum coherence(HMQC) of COC copolymer npRan7………………………………..95 Figure 4-2-11. The homonuclear 1H-1H COSY spectrum of COC copolymer npRan6………………………………………96 Figure 4-2-12. The homonuclear 1H-1H COSY spectrum of COC copolymer npRan7………………………………………97 Figure 4-2-13. Heteronuclear multiple bond coherence spectrum of COC copolymer npRan7………………………………………98 Figure 4-2-14. Peak assignment of iPP-co-PNB COC copolymer……...99 Figure 4-2-15. 1D 13C-NMR spectrum of npRax series COC copolymer……………………………………………...100 Figure 4-3-1. Changes of relative degree of crystallinity Xc with time of ipp and n2p. …………………………………………….122 Figure 4-3-2. Changes of relative degree of crystallinity Xc with time of n4p and n5p. ……………………………………………123 Figure 4-3-3. Avrami plot of ipp and n2p with different crystallization temperatures. …………………………………………...124 Figure 4-3-4. Acrami plot of n4p and n5p with different crystallization temperatures…………………………………………….125 Figure 4-3-5. Overall crystallization rate of all samples at different crystallization temperatures. ……………………………126 Figure 4-3-6. Effect of crystallization temperatures on half time of all samples………………………………………………….127 Figure 4-3-7. Effect of norbornene content on half time at different crystallization temperatures……………………………..128 Figure 4-3-8. Hoffman-Weeks plot of all samples. …………………...129 Figure 4-3-9. DSC thermograms of melting of ipp after isothermal crystallization at different Tc….. ……………………….130 Figure 4-3-10. DSC therograms of melting of n5p after isothermal crystallization at different Tc……………………………131 Figure 4-3-11. Lauritzen-Hoffman plot of all samples………………...132 Figure 4-3-12. The variation of σe and q with NB content…………..133 Figure 4-4-1. The relationship between relative crystallinity and temperature at different cooling rate……………………143 Figure 4-4-2. The relationship between relative crystallinity and temperature at different cooling rate……………………144 Figure 4-4-3. The variation of relative crystallinity with crystallization time at different cooling rate……………………………145 Figure 4-4-4. The variation of relative crystallinity with crystallization time at different cooling rate……………………………146 Figure 4-4-5. DSC thermograms of ipp and 2p at different cooling rate………………………………………………………147 Figure 4-4-6. DSC thermograms of n4p and n5p at different cooling rate…………….. ……………………………………….148 Figre 4-4-7. DSC melting curves of ipp and n2p after non-isothermal crystallization…………………………………………..149 Figure 4-4-8. DSC melting curves of n4p and n5p after non-isothermal crystallization…………………………………………..150 Figure 4-4-9. X-ray diffraction patterns of ipp at different cooling rate. …………………………………………………….151 Figure 4-4-10. X-ray diffraction pattern of n4p at different cooling rate………………………………………………………152

    1. Gordon, M.; Hillier, I. H. Phil. Mag., 1965, 11, 31.
    2. Velisaris, C. N.; Fisher, J. C. J. Chem. Phys., 1986, 17, 71.
    3. Jain, N. L. Makromol. Chem., 1971, 142, 293.
    4. Wunderlich, B.; Mehta. A. J. Polym. Sci., 1974, 12, 255.
    5. Wunderlich, B.; Mehta. A. J. Coll. Polym. Sci., 1975, 253, 193.
    6. Keith. H. D. Kolloid. Z. Z., 1969, 231, 421.
    7. Hillier. I. H. J. Polym. Sci.: Part A, 1965, 6,231.
    8. Keith. H. D., Padden, F. J. J. Appl. Phys., 1963, 34, 2409. 1964, 1270, 1286.
    9. Gordon, M.; Hillier,J. H. Polymer, 1965, 6, 213.
    10. Wunderlich, B. in Macromolecular Physics, Vol. 2, Ch. 6, Academic Press, New York, 1976.
    11. Arroyo, M.; Lopez-Manchado, M. A. Polymer, 1997, 38, 5587.
    12. Marker, L.; Hay, P. M.; Tilley, Early, G. P. R. M. and Sweeting, O. J. J. Polym. Sci., 1959, 38, 33.
    13. Griffith, J. H.; Ranby, B. J. Polym. Sci., 1959, 38, 107.
    14. Mandelkern, L. Crystallization of Polymers. McGraw-Hill, New York 1964.
    15. J. H. Griffith and B. Ranby, J. Polym. Sci., 38, 107 (1959).
    16. Varga. J. J. Mater. Sci., 1992, 27, 2557.
    17. Pae, K. D. J. Poylm. Sci. Part A-2, 1968, 6, 657.
    18. Pae, K. D.; J. A. Sauer, J. Polym. Sci. 1968, 12, 1908.
    19. Samuels, R, J. J. Appl. Polym. Sci. 1975, 13, 1417.
    20. Yadav, Y. S.; Join. P. C. Polymer, 1986, 27, 721.
    21. Bogoeva-Gaceva, G.; Janevski, A.’ Grozdanov, A. J. Appl. Polym. Sci., 1998, 67, 395.
    22. Alwattari, A. A.; Lloyd. D. R. Polymer, 1998, 39, 1129.
    23. Wang, Y. F,; Lloyd, D. R. Polymer, 1993, 34, 2324.
    24. Flory, P. J.; McIntyre, A. D. J. of Polym. Sci., 1995, 18, 590.
    25. Morgan, L. B.; Lester, G. R.; Keller, A.; Hartley, F. D.; and Lord, F. W. Transactions of the Royal Society, London, 1954, A921, 1.
    26. Clark, E. J.; Hoffman, J. D. Macromolecules, 1984,17, 878.
    27. Hoffman, J. D.; Miller, R. L. Macromolecules, 1989, 22, 3505.
    28. Hoffman, J. D.; Dacis,G. T.; and Hoffman, J. I. In Treatise on Solid State Chemistry, ed. H. B. Hannay, Plenum: New York, Chapter 7 1975.
    29. Roitman, D. B.; Marand, H. R.; Miller, L; Hoffman, J. D. J. Phys. Chem., 1989, 93, 6929.
    30. Lovinger, A. J. D.; Davis, D.; Padden, F. J. Polymer, 1985, 26, 1595.
    31. Devoy, C.; Mandelkern, L. Bourland, L. J. Polym. Sci.: Part A-2, 1970, 2, 869.
    32. Carvalho, B. D.; Bretas, R. E. S. J. Appl. Polym. Sci., 1998, 68, 1159.
    33. .K. Godowsky and G. L. Slovonimsky, J. Poly. Sci., 1974, 12, 1053.
    34. E. Martuscelli, C. Silvestre, and G. Abote, Polymer, 1982, 23, 229.
    35. Anevski, A.; gaceva, B. J. Appl. Polym. Sci., 1998,69.381.
    36. Lauritzen, J. I.; Hoffman, J. D. J. Res Natl. Bur. Stand., 1960, 64A, 73.
    37. Hoffman, J. D.; Dacis, G. T.; Hoffman,J . I. In Treatise on Solid State Chemistry, ed. H. B. Hannay, Plenum: New York, Vol. 3, 1975.
    38. Hoffman, J. D.; Miller, R. L. Macromolecules, 1989, 22, 3502.
    39. Hoffman, J. D. R.; Miller, L. Macromolecules, 1988, 21, 3038.
    40. Magill, J. H.; J. Polym. Sci., Part A-2, 1967, 5, 9.
    1. Kaminsky, W.; Bark, A.; Arndy, M. Makromol. Cehm., Macromol. Symp., 1991, 47, 83.
    2. Kaminsky, W.; Noll, A. Polym. Bull. 1993, 31, 175.
    3. Kaminsky, W.; Arndy, M.; Beulich, I. Polym. Mater. Sci. Eng., 1997, 76, 18.
    4. Ruchatz, D.; Fink, G. Macromolecules, 1998, 31, 4681.
    5. Kaminsky., W.; Engehausen, R. Kopf, J. Angew. Chwm., Int. Ed. Engl., 1995, 34, 2273.
    6. Arndy, M.; Engehausen, R.; Kaminsky, W.; Zoumis, K. J. Mol. Catal. A: Chem., 1995, 101, 171.
    7. Arndt, M.; Kaminsky, W. Macromol. Symp., 1995, 97, 225.
    8. Bergstrom, C. H.; Vaananen, T. L. J.; Seppala, J. V. J. Appl. Polym. Sci., 1997, 63,1071.
    9. Ewen, J.; Jones, R.; Razavi, A.; ferrara, J. D. J. Am. Chem. Soc., 1998, 110, 6255.
    10. Ewen, J. A.; Elder, M. J.; Jones, R. L. In Catalytic Olefin Polymerization; Keiei, T.; Soga, K., Eds.; Kodansha: Tokyo, 1990, 439.
    11. Mcknight, A. L.; Waymouth, R. M. Macromolecules, 1999, 32, 2816.
    12. Ruchatz, D.; Fink, G. Macromolecules, 1998, 31, 4674.
    13. Kaminsky, W.; Bark, A.; Dake, I. Polymerization of Cyclic Olefins with Homogeneous Catalysts. In Catalytic Olefin Polymerization; Soga, K., Keii, T., Eds.; Kodansha: Tokyo.1990.
    14. Kaminsky, W.; Bark, A.; Arndy, M. Makromol. Chem., Macromol. Symp., 1991, 47, 83.
    15. Bark, A. Dissertation, Universitat Hamburg, Germany, 1990.
    16. Arndy, M. Dissertation, Universitat Hamburg, Germany, 1994.
    17. Bergstrom, C. H.; Sperlich, B. R.; Ruotoistenmaki, J. J. Polm. Sci. A, 1998,36, 1633.
    18. Arndt, M.; Beulich, I.; Kamisky, W. Worldwide Metallocene Conference, Houstn, Tx, 1996.
    19. Marker, L.; Hay, P. M., Tilley, G. P.; Early, R. M.; Sweeting, O. J. J Polym. Sci., 1959, 38, 33.
    20. Janimak, J. J.; Cheng, S. Z. D.; Giusti, A. Macromolecules, 1991, 24, 2253.
    21. Chiu, F. C.; Fu, Q.; Hsieh, E. T. J. Polym. Res, 1999, 6, 219.
    22. Carroll, C. C. Modern Plastics, September, 1984, 108.
    23. Kuhre, C. J.; Wales, M.; Doyle, M. E. SPE J., October, 1964, 1113.
    24. Ianevski, A.; Gaceva, G. J. app. Polym. Sci., 1998, 69, 381.
    25. Gordon, B. A.; Douglas, R. L. Polym. Eng. Sci., 1993, 33, 513.
    26. Hoffman, J. D.; Lauritzen, J. I. Jr., J. Res. Nat. Bure. Std.:Ser. A, 1961, 4, 315.
    27. Hoffman, J. D. SPE Trans., 1964, 4, 315.
    28. Lauritzen, J. I. Jr.; Hoffman, J. D. J. Appl. Phys., 1973, 44, 4340.
    29. Devoy, C.; Mandelkern, L.; Bourland, L. J. Polym. Sci.: Part A-2, 1970, 869.
    30. Runt, J.; Miley, D. M. Macromolecules, 1992, 25, 1929.
    31. Hoffman, J. D.; Miller, R. L. Macromolecules, 1989, 22, 3502.
    32. Hoffman, J. D. ; Miller, R. L. Macromolecules, 1988, 21, 3038.
    33. Lovinger, A. J. D.; Davis, D.; Padden, F. J. Polymer, 1985, 26, 1595.
    34. Hoffman, J. D.; Dacis, G. T.; Hoffman,J . I. In Treatise on Solid State Chemistry, ed. H. B. Hannay, Plenum: New York, Vol. 3, 1975.
    35. Arroyo, M.; Lopez-Manchado, M. A. Polymer, 1997,38, 5587.
    36. Beck, H. N. J. Polym. Sci.: Part A-2, 1966, 4, 631.
    37. Padden, F. J.; Heith, H. D. J. Appl. Phys. 1959, 30, 1479.
    38. Keith, H. D.; Padden, F. J.; Wyckoff, H. W. J. Appl. Phys., 1959, 30, 1485.
    39. Meille, S. V.; Bruckner, S.; Porzio, W., Macromolecules, 1990, 23, 4114.
    40. Nakafuku, C. Polymer, 1981, 22, 1673.
    41. Turner-Jones, A.; Aizlewood, J. M.; Beckett, D. R. Macromol. Chem., 1964, 75, 134.
    42. Fujiwara, Y. Colloid Polym. Sci., 1955, 253, 273.
    43. Varga, J. Schulek-Toth, F.; Mudra, I. Macromol. Symp., 1994, 78, 229.
    44. Muschik, H.; dragaun, H. Progr. Colloid Polym. Sci., 1979, 66, 319.
    45. Wenig, W.; Herzog, F. J Appl. Ploym. Sci., 1993, 50, 2163.
    46. Thompson, J. L.; Rooyen, A. A. J. Mater. Sci., 1992, 27, 889.
    47. Bofoeva, G.; Janevski, A.; grozdanov, A. J. Appl. Polym. Sci., 1998, 67, 395. Guerra, G.; Petraccone. V. J. polym. Sci. Polym. Phys. Ed. 1984,22, 1029.
    1. An, Y.; Dong, L.; Mo, Z.; and Feng, Z. J. Polym. Sci. Part B, 1998, 36, 1305.
    2. Cebe, P.; Hong, S. D. Polymer, 1986, 27, 1183.
    3. Clark, E. J.; Hoffman. J. D. Macromolecules, 1984, 17, 878.
    4. Hoffman, J. D.; Davis, G. T.; Lauritzen, J. I., Jr. In “Treatise on Solid State Chemistry”; Hannay, N. b., Ed.; Plenum Press: New York, 1976; Vol. 3, Chapter 7.
    5. Hoffman, J. D. Polymer, 1983, 24, 3.
    6. Griffith, J. H.; Ranby, B. G. J. Polym. Sci., 1959, 38, 107.
    7. Lim, G. B. A.; Lloyd. D. R. Polym. Eng. and Sci. 1993, 33, 529.
    8. Muzzy, J. D.; Bright, D. G.; and Hoyos, G. H. Polym. Eng. Sci. 1978, 18, 437.
    9. Varga. J. J. Mater. Sci., 1992, 27, 2557.
    10. Pae, K. D. J. Poylm. Sci. Part A-2, 1968, 6, 657.
    11. Pae, K. D.; J. A. Sauer, J. Polym. Sci. 1968, 12, 1908.
    12. Samuels, R, J. J. Appl. Polym. Sci. 1975, 13, 1417.
    13. Yadav, Y. S.; Join. P. C. Polymer, 1986, 27, 721.
    14. Guerra, G.; Petraccone. V. J. polym. Sci. Polym. Phys. Ed. 1984,22, 1029.
    15. Guerra, G.; Petraccone. V.; Tuzu, A. Macromolecules, 1985, 18, 813.
    16. Guerra, G.; Petraccone. V.; Tuzu, A. Macromol. Chem. Rapid Commun. 1984, 5, 631.
    17. Gaceva, G. B.; Janevski, A. Grozdanov, A. J. Appl. Polym. Sci. 1998, 67, 359.
    18. Padden, F. J.; Heith, H. D. J. Appl. Phys. 1959, 30, 1479.
    19. Keith, H. D.; Padden, F. J.; Wyckoff, H. W. J. Appl. Phys., 1959, 30, 1485.
    20. Meille, S. V.; Bruckner, S.; Porzio, W., Macromolecules, 1990, 23, 4114.
    21. Nakafuku, C. Polymer, 1981, 22, 1673.
    22. Turner-Jones, A.; Aizlewood, J. M.; Beckett, D. R. Macromol. Chem., 1964, 75, 134.
    23. Fujiwara, Y. Colloid Polym. Sci., 1955, 253, 273.
    24. Varga, J. Schulek-Toth, F.; Mudra, I. Macromol. Symp., 1994, 78, 229.

    QR CODE
    :::