跳到主要內容

簡易檢索 / 詳目顯示

研究生: 游政璋
Cheng-chang Yu
論文名稱: 點接觸電極與背面鈍化層結構對異質接面太陽能電池效率之影響
Influence of point contact electrode and back surface passivation on HJ cell efficiency
指導教授: 李正中
Cheng-chung Lee
陳昇暉
Sheng-hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 79
中文關鍵詞: 矽化鎳點接觸異質接面太陽能電池鈍化層
外文關鍵詞: Nickel silicide, Point contact, Heterojunction solar cell, Passivation layer
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為將點接觸(point-contact)電極結構的概念運用於異質接面太陽能電池(Heterojunction solar cell)上,期望以熱氧化矽和氮化矽所堆疊的鈍化層搭配點接觸電極的概念,運用在不同以往的異質接面太陽能電池結構上。
    在本研究的點接觸形式是利用矽化鎳(NiSi)當作N型異質接面太陽能電池的背部電極。沒有和矽化鎳接觸部分以熱氧化矽與氮化矽的堆疊結構作矽基板表面鈍化。另外在元件的背部光學反射特性,我們探討鈍化層的厚度,使光經過背部電極作高反射,以提升太陽能電池的內、外部量子效應,進而增加太陽能電池效率。實驗證明此異質接面太陽能電池的轉換效率有10.5%,其開路電壓約為505 mV,短路電流密度約為36.7mA/cm2,填滿因子約為57%。


    We study the effect on point contact electrode of amorphous/crystalline silicon-heterojunction (SHJ) solar cells. The point-contact structure was using NiSi as back electrode. The area without NiSi was deposited with thermal oxide and silicon nitride as passivation layer. The thickness of passivation layer has been optimized to enhance device optical property, which means light go through the device will be reflected back by the back electrode. The internal and external quantum efficiency of solar cells thus could be improved. The result showed that the conversion efficiency of the SHJ solar cell is 10.5%, the open circuit voltage VOC is about 505 m V, the short-circuit current density JSC is 36.7 and fill factor FF is about 57% .

    第一章 緒論....................1 1.1 研究背景....................1 1.2 研究動機....................4 1.3 論文架構....................5 第二章 文獻回顧....................6 2.1矽太陽能電池的發展....................6 2.2鈍化層對矽太陽能電池的影響....................7 2.3熱氧化矽鈍化層以及熱氧化矽與氮化矽對疊鈍化層介紹........8 第三章 介紹基本理論....................10 3.1太陽能電池工作原理....................10 3.2矽材料內載子的產生(generation)與複合(recombination)........13 3.2.1複合機制....................14 3.2.1.1 輻射復合(Radiative recombination)..........14 3.2.1.2 歐傑復合(Auger recombination)..............16 3.2.1.3缺陷所造成的復合(Recombination through defects)..18 3.3薄膜光學理論應用在光學反射....................23 3.3.1單層膜之反射與透射....................24 3.3.2多層膜之反射與透射....................25 第四章 實驗設計與規劃....................27 4.1實驗架構....................27 4.2實驗流程....................27 第五章 背部接觸....................30 5.1 背部接觸-製作流程....................33 5.2 背部接觸-實驗結果與討論....................38 第六章 高反射特性....................45 6.1高反射特性-製作流程....................45 6.1.1高反射特性-製作流程(Essential Macleod光學薄膜設計) ...45 6.1.2高反射特性-實驗結果與討論(Essential Macleod光學薄膜設計)...47 6.1.3高反射特性-製作流程(實際量測部分)....................49 6.1.4高反射特性-實驗結果與討論(實際量測部分)...............50 第七章 矽表面鈍化....................52 7.1矽表面鈍化-製作流程....................53 7.2矽表面鈍化-實驗結果與討論....................54 第八章 點接觸電極的異質接面太陽能電池....................57 8.1點接觸電極的異質接面太陽能電池-製作流程....................58 8.2點接觸電極的異質接面太陽能電池-實驗結果與討論................59 8.2.1參考片與結構片的差異性....................59 8.2.2退火溫度對元件效率的影響....................61 8.2.3點間距對元件效率的影響....................62 第九章 結論....................66 第十章 未來研究方向....................67 附錄一....................69 附錄二....................73 參考文獻....................74

    [1.1] 太陽輻射光譜圖,Available: http://rredc.nrel.gov/solar/spectra/。
    [1.2] 楊德仁,《太陽能電池材料》,化學工業出版社,北京,2006。
    [1.3] Gavin Conibeer, “Review:Third-generationphotovoltaics”, Materialstoday, 10 (11), pp. 745-747 (1987).
    [1.4] Shockley and Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells”, Journal of Applied Physics, 32 (3), pp. 510 -519 (1961).
    [1.5] Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta and Ewan D. Dunlop, “Solar cell efficiency tables (Version 38) ”, Progress in Photovoltaics: Research and Applications, 19, pp. 565–572 (2011).
    [1.6] Armin G. Aberle, “Surface Passivation of Crystalline Silicon Solar Cells: A Review”, Progress in Photovoltaics: Research and Applications, 8, pp. 473–487 (2000).
    [1.7] Yevgeniya Larionova, Verena Mertens, Nils-Peter Harder, and Rolf Brendel, “Surface passivation of n-type Czochralski silicon substrates by thermal-SiO2/plasma-enhanced chemical vapor deposition SiN stacks”, Applied Physics Letters, 96 (3) , 032105 (2010).
    [1.8] Jan Schmidt, Mark Kerr and Andrés Cuevas, “Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks”, Semiconductor Science and Technology, 16, pp. 164–170 (2001).
    [2.1] Martin A. Green, “The Path to 25% Silicon Solar Cell Efficiency: History of Silicon Cell Evolution”, Progress in Photovoltaics: Research and Applications, 17, pp. 183–189 (2009).
    [2.2] Ohl RS. Light sensitive electric device. US Patent 240252, filed 27 March 1941. Light-sensitive electric device including silicon. US Patent 2443542, filed 27 May 1941.
    [2.3] Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta and Ewan D. Dunlop, “Solar cell efficiency tables (Version 38) ”, Progress in Photovoltaics: Research and Applications, 19, pp. 565–572 (2011).
    [2.4] Armin G. Aberle, Gernot Heiser, and Martin A. Green, “Two-dimensionall numerical optimization study of the rear contact geometry of high-efficiency silicon solar cells”, Journal of Applied Physics, 75 (10), pp. 5391-5405 (1994)
    [2.5] Jianhua Zhao, Jan Schmidg, Aihua Wang, Guangchun Zhang, Bryce S. Richards and Martin A. Green, “Performance instability in n-type pert silicon solar cells”, 3rd World Cutference on Photovoltaic Energy Conversion, Osaka, Japan, May 11-18 ( 2003)
    [2.6] Armin G. Aberle, “Surface Passivation of Crystalline Silicon Solar Cells: A Review”, Progress in Photovoltaics: Research and Applications, 8, pp. 473–487 (2000).
    [2.7] A. Ebong, P. Doshi, S. Narasimha,a A. Rohatgi, J. Wang, and M. A. El-Sayed, “The Effect of Low and High Temperature Anneals on the Hydrogen Content and Passivation of Si Surface Coated with SiO2 and SiN Films”, Journal of The Electrochemical Society, 146 (5), pp. 1921-1924 (1999).
    [2.8] James D. Plummer, Michael D. Deal, Peter B. Griffin, “Silicon VLSI Technology: Fundamentals, Practice and Modeling ”, Prentice Hall, July 24 (2000)
    [2.9] Jianhua Zhao, Aihua Wang and Martin A. Green, “24.5% Efficiency Silicon PERT Cells on MCZ Substrates and 24.7% Effciency PERL Cells on FZ Substrates”, Progress in Photovoltaics: Research and Applications, 7, pp. 471-474 (1999)
    [2.10] Jan Schmidt, Mark Kerr, “Highest-quality surface passivation of low-resistivity p-type silicon using stoichiometric PECVD silicon nitride”, Solar Energy Materials and Solar Cells 65, pp. 585-591 (2001)
    [2.11] Jianhua Zhao, Aihua Wang, Pietro P. Altermatt, Stuart R. Wenham, Martin A. Green , “24% Efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research”, Solar Energy Materials and Solar Cells 41/42 , pp. 87-99 (1996)
    [2.12] Yevgeniya Larionova, Verena Mertens,Nils-Peter Harder, and Rolf Brendel, “Surface passivation of n-type Czochralski silicon substrates by thermal-SiO2/plasma-enhanced chemical vapor deposition SiN stacks”, Applied Physics Letters, 96 (3), 032105 (2010)
    [2.13] Jan Schmidt, Mark Kerr and Andrés Cuevas, “Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks”, Semiconductor Science and Technology, 16, pp. 164–170 (2001).
    [2.14] Yevgeniya Larionova, Verena Mertens, Nils-Peter Harder, and Rolf Brendel, “Surface passivation of n-type Czochralski silicon substrates by thermal-SiO2/plasma-enhanced chemical vapor deposition SiN stacks”, Applied Physics Letters, 96 (3) , 032105 (2010).
    [3.1] 王宣文,《以濺法製作矽異質接面太陽能電池之研究:矽薄膜特性對元件效率的影響》,中央大學博士論文 (2012)
    [3.2] D. K. Schroder, “Semiconductor Material and Device Characterization 2nd ed”, John Wiley and Sons (1998).
    [3.3] H. Schlangenotto, H. Maeder, and W. Gerlach, “Temperature Dependance of the Radiative Recombination Coefficient in Silicon” Physica Status Solidi, 21a , pp. 357-367 (1974).
    [3.4] A. Hangleiter and R. Hacker, “Enhancement of Band-to-Band Auger Recombination by Electron-Hole Correlations”, Physical Review Letters, 65 (2), pp. 215-218 (1990).
    [3.5] D. B. Laks, G. F. Neumark, and S. T. Pantelides, “Accurate interband-Auger-recombination rates in silicon”, Physical Review B, 42 (8), pp. 5176-5185 (1990).
    [3.6] P. T. Landsberg, “Trap-Auger recombination in silicon of low carrier densities”, Applied Physics Letters, 50 (12), pp. 745-747 (1987).
    [3.7] J. Schmidt, M. J. Kerr, and P. P. Altermatt, “Coulomb-enhanced Auger recombination in crystalline silicon at intermediate and high-injection densities”, Journal of Applied Physics, 88 (3), pp. 1494-1497 (2000).
    [3.8] Mark J. Kerr and Andres Cuevas, “General parameterization of Auger recombination in crystalline silicon”, Journal of Applied Physics, 91, pp. 2473-2481 (2002).
    [3.9] Donald A. Neamen, “Semiconductor physics and devices basic principle, 3ed”, International Edition (2000).
    [3.10] W. Shockley and W. T. Read, “Statistics of the Recombinations of Holes and Electrons”, Physical Review, 87, pp. 835-842 (1952)
    [3.11] R. N. Hall, “Electron-Hole Recombination in Germanium”, Physical Review, 87, pp. 387 (1952).
    [3.12] T. Sakurai, T. Sugani, “Theory of continuously distributed trap states at Si-SiO2 interfaces”, Journal of Applied Physics, 52 (4), pp. 2889-2896 (1981).
    [3.13] V. K. Gueorguieva, Tz.E. Ivanov, C.A. Dimitriadis, L.I. Popova, S.K. Andreev, “Electron trapping probabilities in hydrogen ion implanted silicon dioxide films thermally grown on polycrystalline silicon”, Microelectronics Journal, 31, pp. 207–211 (2000).
    [3.14] D. K. Schroder, “Semiconductor Material and Device Characterization”, John Wiley and Sons (1990).
    [3.15] 林聖偉,《矽晶太陽能電池表面鈍化層之量測與分析-介面缺陷濃度與載子捕捉截面積》,清華大學碩士論文 (2010)
    [3.16] S.W. Glunz, S. Rein, W. Warta, J. Knobloch, W. Wettling, “Degradation of carrier lifetime in Cz siliconsolar cells” ,Solar Energy Materials and Solar Cells, 65, pp. 219-229 (2001).
    [3.17] 李正中,《薄膜光學與鍍膜技術》,第六版,藝軒圖書出版社,台北市,2009。
    [3.18] H.A. Macleod, “Thin Film Optical Filters, 2nd ed.”, McGraw Hill, New York (1986).
    [4.1] K.R. Catchpole, A.W. Blakers, “Modeling the PERC structure for industrial quality silicon”, Solar Energy Materials & Solar Cells, 73, pp. 189–202 (2002)
    [4.2] Armin G. Aberle, Gernot Heiser, and Martin A. Green, “Two-dimensional numerical optimization study of the rear contact geometry of high-efficiency silicon solar cells”, Journal of Applied Physics, 75 (10), pp. 5391-5405 (1994)
    [5.1] 林詠祥,《金屬矽化物薄膜與矽/矽鍺界面反應之研究》,中央大學碩士論文 (2004)。
    [5.2] Ruipeng Yang, Na Su, Paolo Bonfanti, Jiaxiang Nie, Jay Ning, and Tomi T. Li, “Advanced in situ pre-Ni silicide (Siconi) cleaning at 65 nm to resolve defects in NiSix modules”, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 28 (1), pp. 56-61 (2010)
    [7.1] Ronald A. Sinton and Andres Cuevas, “Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data”, Applied Physics Letters, 69, pp. 2510-2512 (1996)
    [7.2] Yevgeniya Larionova, Verena Mertens, Nils-Peter Harder, and Rolf Brendel, “Surface passivation of n-type Czochralski silicon substrates by thermal-SiO2/plasma-enhanced chemical vapor deposition SiN stacks”, Applied Physics Letters, 96 (3) , 032105 (2010).
    [7.3] A. Ebong, P. Doshi, S. Narasimha, A. Rohatgi, J. Wang, and M. A. El-Sayed, “The Effect of Low and High Temperature Anneals on the Hydrogen Content and Passivation of Si Surface Coated with SiO2 and SiN Films”, Journal of The Electrochemical Society, 146 (5), pp. 1921-1924 (1999)
    [7.4] Jan Schmidt, Mark Kerr and Andrés Cuevas, “Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks”, Semiconductor Science and Technology, 16, pp. 164–170 (2001).
    [7.5] B.L. Sopori a, X. Deng , J. P. Benner, A. Rohatgi , P. Sana, S.K. Estreicher, Y.K. Park, M.A. Roberson , “Hydrogen in silicon: A discussion of diffusion and passivation mechanisms”, Solar Energy Materials and Solar Cells, 41/42, pp. 159-169 (1996)
    [8.1] Vinod Kumar Khanna, “Review Physical understanding and technological control of carrier lifetimes in semiconductor materials and devices: A critique of conceptual development, state of the art and applications”, Progress in Quantum Electronics, 29, pp. 59–163(2005).
    [8.2] Armin G. Aberle, Gernot Heiser, and Martin A. Green, “Two-dimensional numerical optimization study of the rear contact geometry of high-efficiency silicon solar cells”, Journal of Applied Physics, 75 (10), pp. 5391-5405 (1994)
    [8.3] B. Fischer, “Loss analysis of crystalline silicon solar cells using photoconductance and quantum efficiency measurements”,PhD thesis at university Konstanz, Konstanz, 2003.
    [10.1] Ruipeng Yang, Na Su, Paolo Bonfanti, Jiaxiang Nie, Jay Ning, and Tomi T. Li, “Advanced in situ pre-Ni silicide (Siconi) cleaning at 65 nm to resolve defects in NiSix modules”, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 28 (1), pp. 56-61 (2010).
    [10.2] Yevgeniya Larionova, Verena Mertens, Nils-Peter Harder, and Rolf Brendel, “Surface passivation of n-type Czochralski silicon substrates by thermal-SiO2/plasma-enhanced chemical vapor deposition SiN stacks”, Applied Physics Letters, 96 (3) , 032105 (2010).
    [10.3] Jan Schmidt, Mark Kerr and Andrés Cuevas, “Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks”, Semiconductor Science and Technology, 16, pp. 164–170 (2001).
    [10.4] A. Ebong, P. Doshi, S. Narasimha,a A. Rohatgi, J. Wang, and M. A. El-Sayed, “The Effect of Low and High Temperature Anneals on the Hydrogen Content and Passivation of Si Surface Coated with SiO2 and SiN Films”, Journal of The Electrochemical Society, 146 (5), pp. 1921-1924 (1999).
    [a1] http://web.eecs.umich.edu/~singh/semi.html
    [b1] Jan Schmidt, Mark Kerr and Andrés Cuevas, “Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks”, Semiconductor Science and Technology, 16, pp. 164–170 (2001).
    [b2] Yevgeniya Larionova, Verena Mertens, Nils-Peter Harder, and Rolf Brendel, “Surface passivation of n-type Czochralski silicon substrates by thermal-SiO2/plasma-enhanced chemical vapor deposition SiN stacks”, Appl. Phys. Lett., 96 (3) , 032105 (2010).

    QR CODE
    :::