跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃侶棋
Lu-chi Huang
論文名稱: 鍺量子點埋在氮化矽/二氧化矽之光學特性
Optical properties of Ge QDs embedded in Si3N4/SiO2
指導教授: 徐子民
Tzu-Min Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 99
語文別: 中文
論文頁數: 63
中文關鍵詞: 量子點
外文關鍵詞: Ge QD
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文利用光激發螢光光譜及光調制光譜來分析鍺量子點在氮化矽/二氧化矽結構的發光特性。在不同尺寸量子點的光激發螢光光譜中,量子點的訊號能量會隨著尺寸增加而減小,符合量子尺寸效應。在變溫實驗中,量子點半高寬隨溫度增加無明顯變化,半高寬與量子點尺寸不均勻有關。由不同量測溫度下改變激發功率實驗中,得知電子電洞在量子點內的複合機制為激子複合。最後從氮化矽及矽氧化物的量測光譜中得知量子點訊號會受到氮化矽及矽氧化物的螢光訊號影響。


    In this thesis, we have studied the emission characteristics of Ge QDs embedded in Si3N4/SiO2 matrices by photoluminescence (PL) and photoreflectance (PR). The size dependent PL spectra shows a redshift of the peak energy with increasing QD size. The effect is consistent with the quantum confinement effect. The temperature dependent PL spectra shows that increasing temperature makes a small change in the full-width- half-maximum (FWHM) and the FWHM is related to the non-uniform QDs size distribution. In the power dependent PL measurements under various temperatures, the recombination between electrons/holes is dominated by exciton recombination in the Ge QDs. In the spectra of Ge QDs、Si3N4、SiO2 and Si, the emission signals in Si3N4 and SiO2 films affect the PL emission of Ge QDs.

    目錄 摘要 i 英文摘要 ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 簡介 1 第二章 基本原理 3 2-1 量子點與量子侷限效應 3 2-2 光激發螢光 5 第三章 試片結構與實驗技術 9 3-1 鍺量子點在氮化矽/二氧化矽之試片結構 9 3-2 光激發螢光光譜之實驗架設 14 3-3 光調制反射光譜之實驗架設 17 第四章 結果分析與討論 20 4-1 光激發螢光光譜 20 4-2 變溫螢光光譜 23 4-3 變功率螢光光譜 33 4-4 氮化矽和矽氧化物基板之螢光、調制光譜 42 第五章 結論 49 參考文獻 50

    [1]Hajime Shoji et al., “Temperature dependent lasing characteristics of multi-stacked quantum dot lasers”, Appl. Phys. Lett. 71, 193 (1997)
    [2] W. M. Liao et al., “Room-temperature transient carrier transport in germanium single-hole/electron transistors”, Appl. Phys. Lett. 88, 182109 (2006)
    [3] Yoshihito Maeda et al., “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices”, Appl. Phys. Lett. 59, 3168 (1991)
    [4]Yoshihito Maeda et al., “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism”, Phys. Rev. B 51, 1658–1670 (1995)
    [5]Toshihide Takagahara et al., “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials”, Phys. Rev. B 46, 15578–15581 (1992)
    [6]Yoshihiko Kanemitsu et al., “On the origin of visible photoluminescence in nanometer‐size Ge crystallites”, Appl. Phys. Lett. 61, 2187 (1992)
    [7]V. Ng et al., “Luminescence and X-ray diffraction studies of Ge nanocrystals in amorphous silicon oxide”, Mater. Sci. Eng., A.286,161(2000)
    [8] K. V. Shcheglov et al., “Electroluminescence and photoluminescence of Ge‐implanted Si/SiO2/Si structures”, Appl. Phys. Lett. 66,745(1995)
    [9] J. Wan et al., “Band alignments and photon-induced carrier transfer rom wetting layers to Ge islands grown on Si(001)”, Appl. Phys.Lett.78, 1763 (2001)
    [10]陳弘斌, “鍺/矽/鍺多層量子點結構之光學特性研究”, 國立中央大學物理學系 碩士論文

    QR CODE
    :::