| 研究生: |
謝永祥 Yung-Hsiang Hsieh |
|---|---|
| 論文名稱: |
應用石墨烯元件於水氣穿透率量測之研究 Reserch of graphene-based device applied in water vapor transmission ate measurement |
| 指導教授: |
李正中
Cheng-Chung Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 水氣穿透率 、石墨烯 、電荷轉移 |
| 外文關鍵詞: | water vapor transmission rate, graphene, charge transfer |
| 相關次數: | 點閱:28 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
軟性有機發光二極體顯示器(Flexible organic light emitting diode display)為下一個時代的顯示器的明日之星,但是其對水氣及氧氣極度敏感,因此封裝是一個不可忽略且極度重要的課題。水氣穿透率(單位: g/m2/day)的大小用來評估封裝有機發光二極體的品質,而估計封裝有機發光二極體其水氣穿透率最小為10-6 g/m2/day,目前普遍的量測方法都有長量測時間或是不可重覆使用的問題。近年來,石墨烯被發現是一個優良的氣體感測器,具備反應時間迅速及靈敏的性質,其原理在於氣體分子接觸石墨烯時會有電荷轉移之效應(Charge transfer effect)。故本研究應用石墨烯元件於水氣穿透率的量測,使用化學氣相沉積法(Chemical vapor deposition)成長石墨烯,並使用遮罩鍍製電極。固定偏壓為1伏特觀察元件電流藉由電荷轉移改變做為量測,接著運用理論及邏輯推演的模型擬合,跟實驗的曲線近乎吻合,且量測時間比目前普遍的量測方法還要少許多。相信未來可以成功以石墨烯量測法做為一個新、快速且準確的量測封裝有機發光二極體之水氣穿透率的方法。本研究以電阻平均2 ~2.5千歐姆的石墨烯元件,在量測環境35 ± 3℃ 相對濕度99.9 %下,量測出水氣穿透率5 x 10-4 g/m2/day的樣品,其石墨烯元件電流變化率有72 %變化,其量測時間約一小時。
Flexible organic light emitting diode display is a candidate for next generation display device but the water vapor and oxygen is easy to damage the organic element. Therefore, the organic element needs barrier film to protect it. Water vapor transmission rate (WVTR, unit: g/m2/day)is used to evaluate the quality for encapsulation of organic element, which is estimated 10-6 g/m2/day There are two main ways to measure the WVTR for encapsulation of organic element but they have some disadvantages like that long time measurement and non-reusable. Recently, graphene is found to be a good gas sensor. Graphene has fast response time and sensitive characteristics. The charge transfer between the molecules and the graphene surface when the molecules absorb on graphene is in seconds. In this study, we made a fast WVTR-measurement system by graphene-based device. The graphene-based device is prepared by transferred the graphene which is grown by chemical vapor deposition (CVD) on glass subtrate first and then deposited the metal electrode with mask. The source voltage of graphene-based device kept 1V. Calculating the change of device current due to charge transfer between the molecules and the graphene surface that can be converted to how many water molecules absorb on graphene. Using physically model to fit the measurement data, and the fitting is very similar to experiment results. In the future, the graphene-based device measurement can be a new, fast and accurate way to measure WVTR. In this studt, we use a graphene-based device with average resistance about 2 ~ 2.5 kohm to measure a sample with WVTR ~ 5 x 10-4 g/m2/day under test conition: temperatue 35 ± 3 ℃, relative humidity 85 % in about one hour. The current change rate at the device is 72 %.
1. http://www.wesrch.com/wiki-1207-glass-based-versus-flexible-oled-structure.
2. Groner, M.D., et al., Gas diffusion barriers on polymers using Al[sub 2]O[sub 3] atomic layer deposition. Applied Physics Letters, 2006. 88(5): p. 051907.
3. http://oled-a.org/news_details.cfm?ID=760.
4. Isengard, H.-D., Water content, one of the most important properties of food. Food control, 2001. 12(7): p. 395-400.
5. Schubert, S., et al., Electrical calcium test for moisture barrier evaluation for organic devices. Rev Sci Instrum, 2011. 82(9): p. 094101.
6. Carcia, P.F., et al., Ca test of Al[sub 2]O[sub 3] gas diffusion barriers grown by atomic layer deposition on polymers. Applied Physics Letters, 2006. 89(3): p. 031915.
7. Chen, T.N., et al., High-Performance Transparent Barrier Films of SiO[sub x]∕SiN[sub x] Stacks on Flexible Polymer Substrates. Journal of The Electrochemical Society, 2006. 153(10): p. F244.
8. Reese, M.O., A.A. Dameron, and M.D. Kempe, Quantitative calcium resistivity based method for accurate and scalable water vapor transmission rate measurement. Rev Sci Instrum, 2011. 82(8): p. 085101.
9. Xuesong Li Yanwu Zhu, W.C., Mark Borysiak, Boyang Han and R.D.P. David Chen, † Luigi Colombo,, and Rodney S. Ruoff, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett, 2009. 9(12): p. 4359-4363.
10. Schedin, F., et al., Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007. 6(9): p. 652-5.
11. Ren, Y., et al., Detection of sulfur dioxide gas with graphene field effect transistor. Applied Physics Letters, 2012. 100(16): p. 163114.
12. Yavari, F., et al., Tunable bandgap in graphene by the controlled adsorption of water molecules. Small, 2010. 6(22): p. 2535-8.
13. 吳盈樺, 隨機位能對單層石墨烯和石墨烯島嶼電子特性. 成功大學物理學系學位論文, 2012: p. 1-57.
14. 林永昌、呂俊頡、鄭碩方、邱博文,
石墨烯之電子能帶特性與其元件應用 物理雙月刊, 2011. 33(2): p. 191-202.
15. Andrei, E.Y., G. Li, and X. Du, Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport. Rep Prog Phys, 2012. 75(5): p. 056501.
16. K. S. Novoselov, A.K.G., S. V. Morozov, D. Jiang, and S.V.D. Y. Zhang, I. V. Grigorieva, A. A. Firsov, <Electric Field Effect in AtomicallyThin Carbon Films.pdf>. SCIENCE, 2004. 306: p. 666-669.
17. Zhang, Y., et al., Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Applied Physics Letters, 2005. 86(7): p. 073104.
18. Orofeo, C.M., et al., Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon, 2012. 50(6): p. 2189-2196.
19. Hiroki Ago, Yoshito Ito, Noriaki Mizuta, Kazuma Yoshida Baoshan Hu, Carlo M. Orofeo, and K.-i.I. Masaharu Tsuji, and Seigi Mizuno, <Epitaxial Chemical Vapor Deposition Growth of Single-Layer Graphene over Cobalt Film Crystallized on Sapphire.pdf>. Nano Lett, 2010. 4(12): p. 7407-7414.
20. Amini, S., et al., Growth of large-area graphene films from metal-carbon melts. Journal of Applied Physics, 2010. 108(9): p. 094321.
21. Ago, H., et al., Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene. The Journal of Physical Chemistry Letters, 2012. 3(16): p. 2228-2236.
22. Liu, H., Y. Liu, and D. Zhu, Chemical doping of graphene. J. Mater. Chem., 2011. 21(10): p. 3335-3345.
23. Leenaerts, O., B. Partoens, and F. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Physical Review B, 2008. 77(12).
24. Andrew C. Crowther, A.G., Naeyoung Jung, and Louis E. Brus, <strong charge transfer doping of 1 to 10 layer graphene by NO2.pdf>. Nano Lett, 2012. 6(2): p. 1865-1875.
25. Chen, S., et al., Adsorption/desorption and electrically controlled flipping of ammonia molecules on graphene. New Journal of Physics, 2010. 12(12): p. 125011.
26. Ci, L., et al., Atomic layers of hybridized boron nitride and graphene domains. Nat Mater, 2010. 9(5): p. 430-5.
27. Lin, W.-D., H.-M. Chang, and R.-J. Wu, Applied novel sensing material graphene/polypyrrole for humidity sensor. Sensors and Actuators B: Chemical, 2013. 181: p. 326-331.
28. Meng-Chu Chen, C.-L.H., and Ting-Jen Hsueh, <Fabrication of Humidity Sensor Based on Bilayer Graphene.pdf>. IEEE ELECTRON DEVICE LETTERS, 2014. 35(5).
29. Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009. 457(7230): p. 706-10.
30. Zhao, J., G.-Y. Zhang, and D.-X. Shi, Review of graphene-based strain sensors. Chinese Physics B, 2013. 22(5): p. 057701.
31. E.G Steward, B.p.C., E.A.Kellett, <Dependence on Temperature of the Interlayer Spacing in Carbons of Different Graphitic Perfection.pdf>. nature, 1960. 187: p. 1016.
32. Yoon, D., Y.W. Son, and H. Cheong, Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett, 2011. 11(8): p. 3227-31.
33. Wang, Y., et al., Nitrogen, Hydrogen, Carbon Dioxide, and Water Vapor Sorption Properties of Three-Dimensional Graphene. Journal of Chemical & Engineering Data, 2011. 56(3): p. 642-645.
34. ASTM, Standard Test Method for
Water Vapor Transmission Rate Through Plastic Film and
Sheeting Using a Modulated Infrared Sensor. F1249 – 06, 2011.
35. Malard, L.M., et al., Raman spectroscopy in graphene. Physics Reports, 2009. 473(5-6): p. 51-87.
36. K. S. W. SING (UK, C.D.H.E.U., et al., <REPORTING PHYSISORPTION DATA FOR GASSOLID SYSTEMS with Special Reference to the Determination of Surface Area and Porosity.pdf>. Pure & App!. Chem.,, 1985. 57(4): p. 603-617.