| 研究生: |
游柏彥 Bo-Yen Yu |
|---|---|
| 論文名稱: |
原子層沉積法製備氧化鋅薄膜於全無機綠光鈣鈦礦發光二極體之應用研究 The Study on Zinc Oxide Layer by Atomic Layer Deposition in All-inorganic Green Light Perovskite Light Emitting Diode |
| 指導教授: | 詹佳樺 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 鈣鈦礦 、氧化鋅 、原子層沉積 、鈣鈦礦發光二極體 、綠光 |
| 外文關鍵詞: | Perovskite, Zinc Oxide, Atomic Layer Deposition, Perovskite Light Emitting Diode, Green Light |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本次實驗以先前實驗室研究單源熱蒸鍍鈣鈦礦發光二極體的結果為基礎,並將其中以溶液法製備的氧化鋅層以原子層沉積法進行替換,在比較以原子層沉積法與溶液法後,確認了在相同結構下使用原子層沉積法的元件不僅改善了缺陷且擁有更高的性能,由此可以認為原子層沉積法足以取代過去使用的溶液法。
接著,由於原子層沉積法所沉積的氧化鋅薄膜已具有足夠的平整性提供鈣鈦礦層良好的沉積條件,因此對於在原先結構中只為提供平整條件的底部三氧化鉬層便失去了必要性,在比較有無移除三氧化鉬層的元件發光情形後,觀察到移除了三氧化鉬層的元件具有相同甚至略高的亮度,在確認了氧化鋅層確實能提供足夠平整性,便可移除底部的三氧化鉬層以節省製程時間。由於氧化鋅層具有隨厚度增加,電性也提升的特性,因此針對氧化鋅的厚度進行研究,觀察到厚度在800 Cycle(約180nm)下的氧化鋅擁有最佳性能,可以認為在此厚度下,元件底部的二氧化鈦緻密層對元件性能不具有明顯影響力,但在比較移除前後的元件性能後,觀察到移除二氧化鈦緻密層後元件的輝度有大幅提升,至此已經移除了製程中全部的溶液法,增加了製程穩定性。
最後,在確認CsPbBr3主動層具有足夠的穩定性,可承受刮塗碳電極時其溶液內具有的有機溶劑,便將元件頂部的三氧化鉬層移除,最終,元件的結構為ITO/ALD-ZnO/CsPbBr3/C,本次利用原子層沉積法沉積的氧化鋅對元件結構改善的研究,最後在簡化結構同時節省製程時間的情況下,元件的最大亮度為1380 cd/m2,發光波長為527.2nm。
This experiment is based on the results of the previous laboratory research on the single-source thermal evaporation of perovskite light-emitting diodes, and the zinc oxide layer prepared by the solution method is replaced by the atomic layer deposition method. In comparison, the atomic layer deposition method is used.After the method and the solution method, it is confirmed that the element using the atomic layer deposition method under the same structure not only improves the defects but also has higher performance, it can be considered that the atomic layer deposition method is sufficient to replace the solution method used in the past.
Then, because the zinc oxide film deposited by the atomic layer deposition method has sufficient flatness to provide good deposition conditions for the perovskite layer, it is no longer necessary for the bottom molybdenum trioxide layer in the original structure to provide flatness conditions. After comparing the light emission of the device with or without the molybdenum trioxide layer removed, it is observed that the device with the molybdenum trioxide layer removed has the same or slightly higher brightness. After confirming that the zinc oxide layer can indeed provide sufficient flatness, it can be Remove the molybdenum trioxide layer at the bottom to save process time.Since the zinc oxide layer has the characteristics of increasing its electrical properties as the thickness increases, the thickness of zinc oxide has been studied and it is observed that zinc oxide with a thickness of 800 Cycle (about 180nm) has the best performance, and it can be considered that the thickness is below this thickness.The dense layer of titanium dioxide at the bottom of the device does not have a significant impact on the performance of the device, but after comparing the performance of the device before and after removal, it is observed that the brightness of the device after removing the dense layer of titanium dioxide has been greatly improved. So far, all the components in the process have been removed.The solution method increases the process stability.
Finally, after confirming that the CsPbBr3 active layer is sufficiently stable to withstand the corrosion of the organic solvent when the carbon electrode is scraped, we removed the molybdenum trioxide layer on the top of the device. Finally, the structure of the device is ITO/ALD -ZnO/CsPbBr3/C, the maximum brightness is 1380 cd/m2, and the emission wavelength is 527.2nm. This time, the zinc oxide deposited by atomic deposition method is used to improve the structure of the device. Finally, the structure is simplified and the process time is saved.
參考文獻
[1] A. Kojima, K. Teshima, Y. Shirai, and T. J. J. o. t. A. C. S. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," vol. 131, no. 17, pp. 6050-6051, 2009.
[2] H.-S. Kim et al., "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," vol. 2, no. 1, pp. 1-7, 2012.
[3] E. H. Jung et al., "Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene)," vol. 567, no. 7749, pp. 511-515, 2019.
[4] A. Richter et al., "n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation," vol. 173, pp. 96-105, 2017.
[5] Z.-K. Tan et al., "Bright light-emitting diodes based on organometal halide perovskite," vol. 9, no. 9, pp. 687-692, 2014.
[6] Q. Wang et al., "Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films," vol. 10, no. 2, pp. 516-522, 2017.
[7] H. L. J. Z. f. a. C. Wells, "Über die cäsium‐und kalium‐bleihalogenide," vol. 3, no. 1, pp. 195-210, 1893.
[8] L. Protesescu et al., "Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut," vol. 15, no. 6, pp. 3692-3696, 2015.
[9] X. Li et al., "CsPbX3 quantum dots for lighting and displays: room‐temperature synthesis, photoluminescence superiorities, underlying origins and white light‐emitting diodes," vol. 26, no. 15, pp. 2435-2445, 2016.
[10] N. Yantara et al., "Inorganic halide perovskites for efficient light-emitting diodes," vol. 6, no. 21, pp. 4360-4364, 2015.
[11] J. Burschka et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," vol. 499, no. 7458, pp. 316-319, 2013.
[12] L. Gil-Escrig, A. Miquel-Sempere, M. Sessolo, and H. J. J. T. j. o. p. c. l. Bolink, "Mixed iodide–bromide methylammonium lead perovskite-based diodes for light emission and photovoltaics," vol. 6, no. 18, pp. 3743-3748, 2015.
[13] M. Liu, M. B. Johnston, and H. J. J. N. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," vol. 501, no. 7467, pp. 395-398, 2013.
[14] H. Y. Lin et al., "Efficient Cesium Lead Halide Perovskite Solar Cells through Alternative Thousand‐Layer Rapid Deposition," vol. 29, no. 44, p. 1905163, 2019.
[15] G. Longo, L. Gil-Escrig, M. J. Degen, M. Sessolo, and H. J. J. C. C. Bolink, "Perovskite solar cells prepared by flash evaporation," vol. 51, no. 34, pp. 7376-7378, 2015.
[16] J. Li et al., "Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation," vol. 818, p. 152903, 2020.
[17] B. R. Sutherland et al., "Perovskite thin films via atomic layer deposition," vol. 27, no. 1, pp. 53-58, 2015.
[18] H. Cho et al., "Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes," vol. 350, no. 6265, pp. 1222-1225, 2015.
[19] Y. Hu et al., "Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes," vol. 5, no. 32, pp. 8144-8149, 2017.
[20] K. Lin et al., "Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent," vol. 562, no. 7726, pp. 245-248, 2018.
[21] D. S. Muratov et al., "Slot-Die-Printed Two-Dimensional ZrS3 Charge Transport Layer for Perovskite Light-Emitting Diodes," vol. 11, no. 51, pp. 48021-48028, 2019.
[22] A. Subramanian et al., "Interfacial energy-level alignment for high-performance all-inorganic perovskite CsPbBr3 quantum dot-based inverted light-emitting diodes," vol. 10, no. 15, pp. 13236-13243, 2018.
[23] J. Xie, H. Wang, M. Duan, and L. J. A. s. s. Zhang, "Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method," vol. 257, no. 15, pp. 6358-6363, 2011.
[24] M.-C. Jeong, B.-Y. Oh, W. Lee, and J.-M. J. J. o. C. G. Myoung, "Comparative study on the growth characteristics of ZnO nanowires and thin films by metalorganic chemical vapor deposition (MOCVD)," vol. 268, no. 1-2, pp. 149-154, 2004.
[25] E. M. Wong and P. C. J. A. P. L. Searson, "ZnO quantum particle thin films fabricated by electrophoretic deposition," vol. 74, no. 20, pp. 2939-2941, 1999.
[26] M. Okoshi, K. Higashikawa, and M. J. A. S. S. Hanabusa, "Pulsed laser deposition of ZnO thin films using a femtosecond laser," vol. 154, pp. 424-427, 2000.
[27] W. Water and S.-Y. J. M. L. Chu, "Physical and structural properties of ZnO sputtered films," vol. 55, no. 1-2, pp. 67-72, 2002.
[28] L. Znaidi, G. S. Illia, S. Benyahia, C. Sanchez, and A. J. T. S. F. Kanaev, "Oriented ZnO thin films synthesis by sol–gel process for laser application," vol. 428, no. 1-2, pp. 257-262, 2003.
[29] Y.-C. Cheng, K.-Y. Yuan, M.-J. J. J. o. A. Chen, and Compounds, "ZnO thin films prepared by atomic layer deposition at various temperatures from 100 to 180 C with three-pulsed precursors in every growth cycle," vol. 685, pp. 391-394, 2016.
[30] S. Studenikin, N. Golego, and M. J. J. o. A. p. Cocivera, "Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis," vol. 84, no. 4, pp. 2287-2294, 1998.
[31] H. J. Ko, Y. Chen, S. K. Hong, and T. J. J. o. C. G. Yao, "MBE growth of high-quality ZnO films on epi-GaN," vol. 209, no. 4, pp. 816-821, 2000.
[32] H. Si et al., "An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability," vol. 22, pp. 223-231, 2016.
[33] C.-Y. Chang, K.-T. Lee, W.-K. Huang, H.-Y. Siao, and Y.-C. J. C. o. M. Chang, "High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition," vol. 27, no. 14, pp. 5122-5130, 2015.
[34] W. Li, Y.-X. Xu, D. Wang, F. Chen, and Z.-K. J. O. E. Chen, "Inorganic perovskite light emitting diodes with ZnO as the electron transport layer by direct atomic layer deposition," vol. 57, pp. 60-67, 2018.
[35] H. Beh, D. Hiller, and M. J. p. s. s. Zacharias, "Optimization of ALD‐ZnO Thin Films Toward Higher Conductivity," vol. 215, no. 16, p. 1700880, 2018.
[36] K.-M. Lee et al., "Thickness effects of ZnO thin film on the performance of tri-iodide perovskite absorber based photovoltaics," vol. 120, pp. 117-122, 2015.
[37] M. Najafi et al., "Highly efficient and stable semi‐transparent p‐i‐n planar perovskite solar cells by atmospheric pressure spatial atomic Layer Deposited ZnO," vol. 2, no. 10, p. 1800147, 2018.
[38] Q. Khan et al., "Structure optimization of perovskite quantum dot light-emitting diodes," vol. 11, no. 11, pp. 5021-5029, 2019.
[39] 黃天賜,「單源熱蒸鍍全無機鈣鈦礦薄膜與發光二極體之研究」, 國立中央大學, l 碩士論文,民國110年。