| 研究生: |
劉律慈 Lu-Tzu Liu |
|---|---|
| 論文名稱: |
摻雜層與透明導電薄膜對於矽基鍺光偵測器影響之研究 Effects of P-Type Layer and Transparent Conducting Oxides Film on Ge-on-Si Photodetector |
| 指導教授: |
張正陽
Jenq-Yang Chang 陳彥宏 Yen-Hung Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 矽基鍺光偵測器 、低暗電流密度 、透明導電薄膜 |
| 外文關鍵詞: | Ge-on-Si Photodetector, low dark current density, Transparent Conducting Oxides Film |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來光纖通訊蓬勃發展,使得紅外光偵測器逐漸備受矚目。其中,矽基鍺光偵測器不僅有能吸收紅外光的特性,同時還具備低成本及製程易整合之優勢。而其最大的缺點在於矽與鍺間的異質接面缺陷過多,使得暗電流過高造成功率的損耗以及訊號的干擾,因此降低矽基鍺光偵測器之暗電流為目前重要的議題。在本篇研究中,我們將製作不同p-type摻雜層的矽基鍺光偵測器,並探討其對偵測器特性的影響。此外,我們亦將氧化銦錫(ITO)薄膜應用於矽基鍺光偵測器上,希望藉此降低暗電流以提升光偵測器的元件特性。
本研究之矽基鍺光偵測器為p-i-n結構,在利用減壓化學氣象沉積法(RPCVD)將本質鍺層成長於n-type矽基板後,我們利用RPCVD與電子迴旋氣相沉積法(ECRCVD)成長不同結構p-type摻雜層,並探討其對光偵測器特性之影響。結果顯示利用ECRCVD成長p+-Ge摻雜層的光偵測器相較於其他結構,有較高的響應度0.171 A/W,同時暗電流密度維持於0.542 mA/cm2;響應度較高的原因為p-type摻雜層中硼摻雜濃度較高,使得p-i-n結構中有較大的內建電場,進而有效地分離照光後產生的電子電洞對,以形成較大之光電流。
本篇研究亦使用射頻磁控濺鍍法(RF Sputtering)調控各種不同製程參數(氬氣流量、氧氣流量、腔體壓力)成長ITO薄膜於光偵測器上,藉此降低暗電流並同時探討不同特性ITO對於光偵測器的影響,其中光偵測器之暗電流最低可達1.20×10-7 A,暗電流密度為0.048 mA/cm2。而從實驗結果中顯示,添加了ITO層的光偵測器皆有暗電流下降的現象(1~3個數量級),其原因為載子濃度高於1018~1019 cm-3的ITO薄膜具有填補半導體表面懸掛鍵之特性,因此能夠降低光偵測器之暗電流。
In recent decades, near-infrared-region photodetector has attracted attention gradually with development of fiber-optical communication. Germanium-on-Silicon photodetector not only can detect NIR light but also contain the advantages of low cost and easy integration. However, the defects due to the heterojunction between Si and Ge would increase the dark current which causes power consumption and signal interference so decreasing the dark current of a Ge-on-Si photodetector becomes an important issue. In this study, we fabricated different p-type layer of a photodetector and investigated its effect. In addition, we employed Indium Tin Oxide (ITO) thin film on a photodetector to lower the dark current.
The photodetectors fabricated in this research are p-i-n structure. At the beginning, we used Reduced-Pressure Chemical Vapor Deposition (RPCVD) to deposit intrinsic germanium (i-Ge) on n-type silicon substrate. Then, different kinds of p-type layer were grown by RPCVD and Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD). The results revealed that photodetector with p+-Ge layer grown by ECRCVD exhibited higher responsivity of 0.171 A/W than others. The reason is due to the stronger built-in electric field caused by heavier doping concentration in p-type layer.
On the other hand, we grew different characteristic ITO thin film by controlling the process parameters in Radio Frequency (RF) Sputtering system, argon flow, oxygen flow and ambient pressure. Also, we employed these ITO thin films on photodetector to lower the dark current and investigate on the relationship between them. Here, we have demonstrated a Ge-on-Si photodetector with ITO layer and its performance is dark current of 0.12 μA at -3 V bias, dark current density of 0.048 mA/cm2.
[1]H. J. R. Dutton, Understanding Optical Communications, IBM, 1998
[2]P. Chakrabarti, Optical Fiber Communication. 2015
[3]Y. Ishikawa and S. Saito, "Ge-on-Si photonic devices for photonic-electronic integration on a Si platform," IEICE Electronics Express, 11, 20142008–20142008 (2014)
[4]K. W. Ang, T. Y. Llow, M. B. Yu, Q. Fang, J. Song, G. Q. Lo, and D. L. Kwong, "Low thermal budget monolithic integration of Evanescent-Coupled Ge-on-SOI Photodetector on Si CMOS platform," IEEE Journal of Selected Topics in Quantum Electronics, 16, 106–113 (2010)
[5]J. H. Nam , F. Afshinmanesh, D. Nam, W. S. Jung, T. I. Kamins, M. L. Brongersma, and K. C. Saraswat , "Monolithic integration of germanium-on-insulator p-i-n photodetector on silicon," Optics Express, 23, 15816 (2015)
[6]M. Oehme, J. Werner, E. Kasper, S. Klinger, and M. Berroth, "Photocurrent analysis of a fast Ge p-i-n detector on Si," Applied Physics Letters, 91, 051108 (2007)
[7]J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri, and H. von Känel, "Ultralow dark current Ge/Si(100) photodiodes with low thermal budget," Applied Physics Letters, 94, 201106 (2009)
[8]C. G. Littlejohns, A. Z. Khokhar, D. J. Thomson, Y. Hu, L. Basset,S. A. Reynolds, G. Z. Mashanovich, G. T. Reed, and F. Y. Gardes, "Ge-on-Si plasma-enhanced chemical vapor deposition for low-cost Photodetectors," IEEE Photonics Journal, 7, 1–8 (2015)
[9]P. H. Huang, C. H. Chou, and C. L. Hsin, "Ge Photodetector monolithically integrated on Si by rapid-melting-growth technique," IEEE Photonics Technology Letters, 27, 1254–1256 (2015)
[10]M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tünnermann, "Ge-on-Si photodiode with black silicon boosted responsivity," Applied Physics Letters, 107, 051103 (2015)
[11]J.H. Yun, M. D. Kumar, Y. C. Park, H.-S. Kim, and J. Kim, "High performing ITO/Ge heterojunction photodetector for broad wavelength detection," Journal of Materials Science: Materials in Electronics, 26, 6099–6106 (2015)
[12]G. Isella, J. Osmond, M. Kummer, R. Kaufmann, and H. von K¨ane, "Heterojunction photodiodes fabricated from Ge/Si (100) layers grown by low-energy plasma-enhanced CVD," Semiconductor Science and Technology, 22, S26–S28 (2006)
[13]B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, New York, 2007
[14]D. Decoster and J. Harari, Optoelectronic Sensors, Wiley-ISTE, 2009.
[15]https://www.coursehero.com/file/8285990/Lect12-photodiode-detectors
[16]H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, "Transparent conducting oxides for electrode applications in light emitting and absorbing devices," Superlattices and Microstructures, vol. 48, no. 5, pp. 458–484, Nov. 2010.
[17]H. Koseoglu, F. Turkoglu, M. Kurt, M.D. Yaman, F. G. Akca, G. Aygun, and L. Ozyuzer, "Improvement of optical and electrical properties of ITO thin films by electro-annealing," Vacuum, 120, 8–13 (2015)
[18]http://www.ioffe.ru/SVA/NSM/Semicond/Ge/bandstr.html
[19]G. Barbarino, Silicon Photo Multipliers Detectors Operating in Geiger Regime: an Unlimited Device for Future Applications, 2011.
[20]http://hyperphysics.phy-astr.gsu.edu/hbase/solids/pnjun.html
[21]R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis., "High-performance Near-IR Photodiodes: A novel chemistry-based approach to Ge and Ge–Sn devices integrated on silicon," IEEE Journal of Quantum Electronics, 47, 213–222 (2011)
[22]Z. Zhou, J. He, R. Wang, C. Li, and J. YuNormal incidence p–i–n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition," Optics Communications, 283, 3404–3407 (2010)
[23]V. Sorianello, L. Colace, N. Armani,F. Rossi, C. Ferrari,L. Lazzarini, and G. Assanto, "Low-temperature germanium thin films on silicon," Optical Materials Express, 1, 856 (2011)
[24]J. Schulze, M. Oehme, and J. Werner, "Molecular beam epitaxy grown Ge/Si pin layer sequence for photonic devices," Thin Solid Films, 520, 3259–3261 (2012)
[25]游鈞傑, 王駿翰, and 簡崇恩, "透明導電膜應用於顯示器上之研究," 實務專題報告, 東南科技大學電子工程系
[26]李玉華, "透明導電膜及其應用," 科儀新知, 12, 94–102 (1990)
[27]M. Quaas, C. Eggs, and H. Wulff, "Structural studies of ITO thin films with the Rietveld method," Thin Solid Films, 332, 277–281 (1998)
[28]楊明輝, 透明導電膜, 藝軒圖書出版社, 2006
[29]K. L. Chopra, S. Major, and D. K. Pandya, "Transparent conductors—A status review," Thin Solid Films, 102, 1–46 (1983)
[30]F. Khan, S. H. Baek, S.N. Singh, P.K. Singh, and J. H. Kim, "Effective passivation of silicon surface by AZO films: Application in bifacial solar cells," Solar Energy, 97, 474–483 (2013)
[31]楊賜麟, 半導體物理與元件, 滄海書局, 2010
[32]曾坤三, "ITO薄膜濺鍍製程最佳化與其不均勻光電特性研究," 博士論文, 國立成功大學機械工程系, 2014
[33]H. Koseoglu, F. Turkoglu a, M. Kurt, M. D. Yaman, F. G. Akca, G. Aygun, and L. Ozyuzer, "Improvement of optical and electrical properties of ITO thin films by electro-annealing," Vacuum, 120, 8–13 (2015)
[34]C. H. Liang, S. C. Chen, X. Qi, C. S. Chen, and C. C. Yang, "Influence of film thickness on the texture, morphology and electro-optical properties of indium tin oxide films," Thin Solid Films, 519, 345–350 (2010)
[35]G. V. Hansson, R. Z. Bachrach, R. S. Bauer, and P. Chiaradia, "New models for metal-induced reconstructions on Si(111)," Physical Review Letters, 46, 1033–1037 (1981)
[36]I. Lefebvre, M. Lannoo, C. Priester, G. Allan, and C. Delerue, "Role of dangling bonds at Schottky barriers and semiconductor heterojunctions," Physical Review B, 36, 1336–1339 (1987)
[37]R. M. Feenstra, "Electronic states of metal atoms on the GaAs(110) surface studied by scanning tunneling microscopy," Physical Review Letters, 63, 1412–1415 (1989)
[38]P. Stradins, S. Essig, W. Nemeth, B.G. Lee, D. Young, A. Norman, Y. Liu, J-W. Luo, E. Warren, A. Dameron, V. LaSalvia, and M. Page, "Passivated Tunneling Contacts to N-Type Wafer Silicon and Their Implementation into High Performance Solar Cells," National Renewable Energy Laboratory (NREL), 2014
[39]D. L. Young, W. Nemeth, S. Grover, A. Norman, H. C. Yuan, B. G. Lee, V. LaSalvia, and P. Stradins, "Carrier selective, Passivated contacts for high efficiency silicon solar cells based on transparent conducting oxides," Energy Procedia, 55, 733–740 (2014)