| 研究生: |
孟恩立 Arief Muammar |
|---|---|
| 論文名稱: |
酵母菌biotin protein ligase對histones biotinylation的研究 Biotinylation of histones by a yeast biotin protein ligase |
| 指導教授: |
王健家
Chien-Chia Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 生物素蛋白連接酶 、白色念珠菌 、H2B 、生物素化 、體內 、體外 、釀酒酵母菌 、AMKM 、SSKD 、Arc1p |
| 外文關鍵詞: | Bpl1p, Candida albican, H2B, biotinylation, in vivo, in vitro, Saccharomyces cereviseae, AMKM, SSKD, Arc1p |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
組織蛋白 (histones) H1、H2A、H2B、H3和H4是與DNA結合的蛋白質,幫助DNA摺疊形成染色質。組織蛋白經由各種後修飾作用去調節DNA的轉錄、複製及修復,像是經由磷酸化、乙酰化,生物素化和ADP-核糖基化的過程。其中一種後修飾作用是加上生物素,經由生物素蛋白連接酶 (biotin protein ligase) 以共價鍵的方式將生物素加在蛋白質的離胺酸 (lysine residues)上。在細胞生長和脂肪酸代謝中生物素是必要的,當作乙醯輔酶A羧化酶 (acetyl-CoA carboxylase) 和丙酮酸羧化酶 (pyruvate carboxylase) 的輔助因子。在羧化酶 (carboxylases) 中有一段保守序列AMKM,其中的離胺酸會被加上生物素。由先前文獻得知,生物素化可發生在不同的物種中。令人驚奇的是在白色念珠菌 (Candida albicans) 中的組織蛋白H2A、 H2B和H4缺乏保守序可提供生物素蛋白連接酶辨認,但是這物種卻可以把生物素加到組織蛋白上,而這些生物素的位置也沒有固定的序列。由本研究得知,H2B被加上生物素會受生物素的濃度以及溫度影響。此外,在體外和體內實驗中,白色念珠菌的生物素蛋白連接酶無法將釀酒酵母菌 (Saccharomyces cereviseae) 的H2B進行生物素化的反應。本研究進一步目的是為了探討白色念珠菌的生物素蛋白連接酶的受質專一性如何進行生物素化的反應機制。
Histones H1, H2A, H2B, H3 and H4 are DNA-binding proteins that mediate the folding of DNA into chromatin. Various posttranslational modifications of histones such as phosphorylation, acetylation, ubiquitinylation and ADP-ribosylation regulate processes such as transcription, replication and repair of DNA. One of the posttranslational modifications is biotinylation, which is covalent binding of biotin to lysine residues of a protein, mediated by biotin protein ligase (Bpl1p). Biotin is required for cell growth and fatty acid metabolism. It is used as a cofactor for carboxylases such as acetyl-CoA carboxylase and pyruvate carboxylase. The biotinylated lysine residue is almost invariably positioned in a consensus sequence, AMKM, within carboxylases. As a result, biotinylation can occur across widely divergent species. Paradoxically, the histones H2A, H2B and H4 of Candida albican lack a consensus sequence, but can be bioyinylated by its own biotin protein ligase (Bpl1p) in vivo. In addition, biotinylation of these histone proteins is non site specific. In this study, we showed that biotinylation of H2B is biotin concentration dependent and temperature dependent. Moreover, the Bpl1p of C. albicans failed to biotinylate the histone proteins of Saccharomyces cereviseae in vivo and in vitro. More studies are underway to elucidate the specificity and mechanism of biotinylation by C. albican Bpl1p.
1. Camporeale, G., Chew, Y.C., Kueh, A., Sarath, G., and Zempleni, J. (2008). Use of synthetic peptides for identifying biotinylation sites in human histones. Methods Mol Biol 418, 139-148.
2. Camporeale, G., Shubert, E.E., Sarath, G., Cerny, R., and Zempleni, J. (2004). K8 and K12 are biotinylated in human histone H4. Eur J Biochem 271, 2257-2263.
3. Chang, K.J., and Wang, C.C. (2004). Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem 279, 13778-13785.
4. Chapman-Smith, A., and Cronan, J.E., Jr. (1999). In vivo enzymatic protein biotinylation. Biomol Eng 16, 119-125.
5. Cronan, J.E., Jr. (1990). Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem 265, 10327-10333.
6. Fischle, W. (2014). Molecular mechanisms of histone modification function. Biochim Biophys Acta 1839, 621-622.
7. Gravel, R.A. (2014). Holocarboxylase synthetase: a multitalented protein with roles in biotin transfer, gene regulation and chromatin dynamics. Mol Genet Metab 111, 305-306.
8. Hasim, S., Tati, S., Madayiputhiya, N., Nandakumar, R., and Nickerson, K.W. (2013). Histone biotinylation in Candida albicans. FEMS Yeast Res 13, 529-539.
9. Hassan, Y.I., and Zempleni, J. (2006). Epigenetic regulation of chromatin structure and gene function by biotin. J Nutr 136, 1763-1765.
10. Healy, S., Perez-Cadahia, B., Jia, D., McDonald, M.K., Davie, J.R., and Gravel, R.A. (2009). Biotin is not a natural histone modification. Biochim Biophys Acta 1789, 719-733.
11. Hoja, U., Wellein, C., Greiner, E., and Schweizer, E. (1998). Pleiotropic phenotype of acetyl-CoA-carboxylase-defective yeast cells--viability of a BPL1-amber mutation depending on its readthrough by normal tRNA(Gln)(CAG). Eur J Biochem 254, 520-526.
12. Hornby, J.M., Jensen, E.C., Lisec, A.D., Tasto, J.J., Jahnke, B., Shoemaker, R., Dussault, P., and Nickerson, K.W. (2001). Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67, 2982-2992.
13. Huntley, R.P., Sawford, T., Mutowo-Meullenet, P., Shypitsyna, A., Bonilla, C., Martin, M.J., and O'Donovan, C. (2015). The GOA database: gene Ontology annotation updates for 2015. Nucleic Acids Res 43, D1057-1063.
14. Hymes, J., Fleischhauer, K., and Wolf, B. (1995). Biotinylation of histones by human serum biotinidase: assessment of biotinyl-transferase activity in sera from normal individuals and children with biotinidase deficiency. Biochem Mol Med 56, 76-83.
15. Jenuwein, T., and Allis, C.D. (2001). Translating the histone code. Science 293, 1074-1080.
16. Kim, H.S., Hoja, U., Stolz, J., Sauer, G., and Schweizer, E. (2004). Identification of the tRNA-binding protein Arc1p as a novel target of in vivo biotinylation in Saccharomyces cerevisiae. J Biol Chem 279, 42445-42452.
17. Kobza, K.A., Chaiseeda, K., Sarath, G., Takacs, J.M., and Zempleni, J. (2008). Biotinyl-methyl 4-(amidomethyl)benzoate is a competitive inhibitor of human biotinidase. J Nutr Biochem 19, 826-832.
18. Kothapalli, N., Camporeale, G., Kueh, A., Chew, Y.C., Oommen, A.M., Griffin, J.B., and Zempleni, J. (2005a). Biological functions of biotinylated histones. J Nutr Biochem 16, 446-448.
19. Kothapalli, N., Sarath, G., and Zempleni, J. (2005b). Biotinylation of K12 in histone H4 decreases in response to DNA double-strand breaks in human JAr choriocarcinoma cells. J Nutr 135, 2337-2342.
20. Kuroishi, T., Rios-Avila, L., Pestinger, V., Wijeratne, S.S., and Zempleni, J. (2011). Biotinylation is a natural, albeit rare, modification of human histones. Mol Genet Metab 104, 537-545.
21. Lau, P.N., and Cheung, P. (2013). Elucidating combinatorial histone modifications and crosstalks by coupling histone-modifying enzyme with biotin ligase activity. Nucleic Acids Res 41, e49.
22. Narang, M.A., Dumas, R., Ayer, L.M., and Gravel, R.A. (2004). Reduced histone biotinylation in multiple carboxylase deficiency patients: a nuclear role for holocarboxylase synthetase. Hum Mol Genet 13, 15-23.
23. O'Callaghan C, A., Byford, M.F., Wyer, J.R., Willcox, B.E., Jakobsen, B.K., McMichael, A.J., and Bell, J.I. (1999). BirA enzyme: production and application in the study of membrane receptor-ligand interactions by site-specific biotinylation. Anal Biochem 266, 9-15.
24. Pendini, N.R., Bailey, L.M., Booker, G.W., Wilce, M.C., Wallace, J.C., and Polyak, S.W. (2008). Biotin protein ligase from Candida albicans: expression, purification and development of a novel assay. Arch Biochem Biophys 479, 163-169.
25. Pispa, J. (1965). Animal biotinidase. Ann Med Exp Biol Fenn 43, Suppl 5:1-39.
26. Polyak, S.W., Chapman-Smith, A., Brautigan, P.J., and Wallace, J.C. (1999). Biotin protein ligase from Saccharomyces cerevisiae. The N-terminal domain is required for complete activity. J Biol Chem 274, 32847-32854.
27. Rodriguez-Melendez, R., and Zempleni, J. (2003). Regulation of gene expression by biotin (review). J Nutr Biochem 14, 680-690.
28. Rousseau, F., Schymkowitz, J., and Itzhaki, L.S. (2012). Implications of 3D domain swapping for protein folding, misfolding and function. Adv Exp Med Biol 747, 137-152.
29. Sikorski, R.S., and Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19-27.
30. Sittiwong, W., Cordonier, E.L., Zempleni, J., and Dussault, P.H. (2014). beta-Keto and beta-hydroxyphosphonate analogs of biotin-5'-AMP are inhibitors of holocarboxylase synthetase. Bioorg Med Chem Lett 24, 5568-5571.
31. Stanley, J.S., Griffin, J.B., and Zempleni, J. (2001). Biotinylation of histones in human cells. Effects of cell proliferation. Eur J Biochem 268, 5424-5429.
32. Strahl, B.D., and Allis, C.D. (2000). The language of covalent histone modifications. Nature 403, 41-45.
33. Sumper, M., and Riepertinger, C. (1972). Structural relationship of biotin-containing enzymes. Acetyl-CoA carboxylase and pyruvate carboxylase from yeast. Eur J Biochem 29, 237-248.
34. Turner, B.M. (2000). Histone acetylation and an epigenetic code. Bioessays 22, 836-845.
35. Vermaak, D., and Wolffe, A.P. (1998). Chromatin and chromosomal controls in development. Dev Genet 22, 1-6.
36. Winter, S., Simboeck, E., Fischle, W., Zupkovitz, G., Dohnal, I., Mechtler, K., Ammerer, G., and Seiser, C. (2008). 14-3-3 proteins recognize a histone code at histone H3 and are required for transcriptional activation. EMBO J 27, 88-99.
37. Wolf, B., and Heard, G.S. (1991). Biotinidase deficiency. Adv Pediatr 38, 1-21.
38. Xia, M., Malkaram, S.A., and Zempleni, J. (2013). Three promoters regulate the transcriptional activity of the human holocarboxylase synthetase gene. J Nutr Biochem 24, 1963-1969.
39. Zempleni, J. (2005). Uptake, localization, and noncarboxylase roles of biotin. Annu Rev Nutr 25, 175-196.
40. Zempleni, J., Teixeira, D.C., Kuroishi, T., Cordonier, E.L., and Baier, S. (2012). Biotin requirements for DNA damage prevention. Mutat Res 733, 58-60.