跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭良裔
Liang-Yi Kuo
論文名稱: 哈吉貝颱風(2019)的外眼牆生成機制
指導教授: 黃清勇
Ching-Yuang Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣科學學系
Department of Atmospheric Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 107
中文關鍵詞: 眼牆置換
外文關鍵詞: Sawyer-Eliassen Equation
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以哈吉貝颱風(2019)為例,探討眼牆置換中的動力機制。結果顯示,由內眼牆對流發展釋出的上對流層冰相粒子可能對眼牆置換有重要的貢獻。在本個案中,環境北風風切將大量冰相粒子集中至颱風南側,並在東南側的內眼牆與外圍雨帶之間產生明顯非絕熱冷卻。這些冷卻增強了徑向非絕熱加熱梯度,並在內眼牆與外圍雨帶之間引發逆向的二次環流,使得邊界層上從內眼牆非軸對稱的徑向外流與外圍雨帶外側的徑向內流產生強烈的水平輻合,並引發垂直運動。外圍雨帶外側較強的徑向內流同時也提供較大的角動量徑向平流,使邊界層內的切向風得以加強;邊界層上至低對流層的切向風增量則主要由軸對稱垂直平流產生。外眼牆的形成伴隨著梯度力的軸對稱化與超梯度力的發展,而哈吉貝颱風原有北側超梯度力、南側次梯度力,隨著外眼牆的軸對稱化逐漸消弭,並發展出超梯度力環繞在外眼牆內側。
    綜合而言,非軸對稱擾動是外眼牆生成的肇始者,與外圍環流有關,用於啟動邊界層內不平衡動力,且增強邊界層內的切向風;軸對稱環流則在外眼牆發展後期以徑向平流增強邊界層內切向風,垂直平流增強邊界層上至低對流層切向風。同時,徑向非絕熱加熱梯度與外眼牆發展動力有關,在此個案中,徑向非絕熱加熱梯度最大的下風切左側即為主導外眼牆生成的重要區域。


    This study takes the example of Typhoon Hagibis (2019) to investigate the dynamical mechanism of ERC. The result shows that the ice crystals in the upper troposphere diffused by strong inner eyewall convection could be a considerable contributor to ERC. In this case the northerly wind shear concentrates the ice crystals to the south of the cyclone and produces diabatic cooling in between of the inner eyewall and outer rainbands at the southeast quadrant evidently. The cooling effect strengthens the radial gradient of diabatic heating, which induces an inverse secondary circulation between the inner eyewall and the outer rainbands, causing intense horizontal convergence that forces vertical motion via asymmetrical radial outflow above the boundary layer and within the moat to converge with the radial inflow at the radial outward side of the outer rainbands. This radial inflow also provides positive radial advection of angular momentum, which intensifies the tangential wind in the boundary layer, wherase tangential wind increment above the boundary layer and in the lower troposphere is induced by axisymmetric vertical advection. The formation of the outer eyewall is accompanied by the axisymmetrization of gradient force and the development of supergradient force. Typhoon Hagibis performs supergradient force to the north and subgradient force to the south of the vortex center initially, but such agradient pattern is progressively reduced by axisymmetrization of the outer eyewall, with supergradient force building up at the inward side of the outer eyewall.
    Overall speaking, asymmetry (eddy) transport is the precursor of the secondary eyewall formation, caused by the outer rainbands, which initiates the unbalanced boundary layer dynamics and accelerates the tangential wind in the boundary layer, wherase axisymmetric processes spin up the tangential wind in the boundary layer at the later stage of the development of the outer eyewall via radial advection, and above the boundary layer and in the lower troposphere via vertical advection. Meanwhile, radial gradient of diabatic heating is related to the outer eyewall developing dynamics, favorable for downshear left quadrant where the strongest radial gradient of diabatic heating exists as the dominant for the formation of the outer eyewall in this case.

    摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 vi 一、前言 1 二、研究方法與實驗設計 4 2-1 哈吉貝颱風簡述 4 2-2 WRF模式設定 5 2-3-1 Sawyer-Eliassen (SE) equation推導 5 2-3-2 Sawyer-Eliassen (SE) equation求解 11 2-4 角動量收支 12 三、模擬結果與各參數分析 14 3-1 模擬結果概覽 14 3-2 雙眼牆間沉降區的生成與演變 16 3-3 外眼牆的生成與演變 17 3-3-1 角動量分析 17 3-3-2 梯度風分析 21 3-3-3 SE方程分析 25 3-4 暖雲實驗 29 四、總結與未來展望 31 4-1 總結 31 4-2未來展望 33 參考文獻 34 附圖 38

    沙聖浩,2021: 颱風利奇馬Lekima(2019)通過臺灣的數值研究:地形對不同颱風路徑的影響,國立中央大學大氣物理研究所碩士論文。

    Abarca, S. F., Montgomery, M. T., Braun, S. A., & Dunion, J. (2016). On the secondary eyewall formation of Hurricane Edouard (2014). Mon. Weather Rev., 144(9), 3321-3331.

    Ahern, K., Hart, R. E., & Bourassa, M. A. (2022). Asymmetric hurricane boundary layer structure during storm decay. Part II: secondary eyewall formation. Monthly Weather Review, 150(8), 1915-1936.

    Bell, M. M., Montgomery, M. T., & Lee, W.-C. (2012). An axisymmetric view of concentric eyewall evolution in Hurricane Rita (2005). Journal of the Atmospheric Sciences, 69(8), 2414-2432.

    Cheung, A. A., Slocum, C. J., Knaff, J. A., & Razin, M. N. (2024). Documenting the progressions of secondary eyewall formations. Weather and Forecasting, 39(1), 19-40.

    Didlake, A. C., & Wunsch, K. E. D. (2018). Analyzing tropical cyclone structures during secondary eyewall formation using aircraft in situ observations. Monthly Weather Review, 146(12), 3977-3993.

    Didlake, A. C., Reasor, P. D., Rogers, R. F., & Lee, W.-C. (2018). Dynamics of the transition from spiral rainbands to a secondary eyewall in Hurricane Earl (2010). Journal of the Atmospheric Sciences, 75(9), 2909-2929.

    Hawkins, J. D., & M. Helveston (2008). Tropical cyclone multiple eyewall characteristics. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., P1.7.

    Houze, R. A., & Hence, D. A. (2012). Vertical structure of tropical cyclone rainbands as seen by the TRMM Precipitation Radar. Journal of the Atmospheric Sciences, 69(9), 2644-2661.

    Huang, C.-Y., Juan, T.-C., Kuo, H.-C., & Chen, J.-H. (2020). Track deflection of Typhoon Maria (2018) during a westbound passage offshore of northern Taiwan: Topographic influence. Monthly Weather Review, 148(11), 4519-4544.

    Huang, Y.-H., Montgomery, M. T., & Wu, C.-C. (2012). Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. Journal of the Atmospheric Sciences, 69(2), 662 -674.

    Huang, Y.-H., Wu, C.-C., & Montgomery, M. T. (2018). Concentric eyewall formation in Typhoon Sinlaku (2008). Part III: Horizontal momentum budget analyses. Journal of the Atmospheric Sciences, 75(10), 3541-3563.

    Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008). Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres, 113(D13).

    Kessler, E. (1969). On the distribution and continuity of water substance in atmospheric circulations. Atmospheric Reserch, 38(1995), 109-145.

    Kuo, H.-C., Chang, C.-P., Yang, Y.-T., & Jiang, H.-J. (2009). Western North Pacific typhoons with concentric eyewalls. Monthly Weather Review, 137(11), 3758-3770.

    Montgomery, M. T., & Persing, J. (2021). Does balance dynamics well capture the secondary circulation and spinup of a simulated hurricane? Journal of the Atmospheric Sciences, 78(1), 75-95.

    Nguyen, T.-C., & Huang, C.-Y. (2023). Investigation on the intensification of Supertyphoon Yutu (2018) based on symmetric vortex dynamics using the Sawyer–Eliassen Equation. Atmosphere, 14(11).

    Nguyen, T.-C., Huang, C.-Y., Kuo, H.-C., & Kuo, L.-Y. (2024). Rapid intensification of Supertyphoon Hagibis (2019) associated with the concentric eyewalls as explored by the Extended Sawyer-Eliassen Equation. Weather and Forecasting.

    Nong, S., & Emanuel, K. (2006). A numerical study of the genesis of concentric eyewalls in hurricanes. Quarterly Journal of the Royal Meteorological Society, 129(595), 3323-3338.

    Qin, N., Wu, L., & Liu, Q. (2021). Evolution of the moat associated with the secondary eyewall formation in a simulated tropical cyclone. Journal of the Atmospheric Sciences, 78(12), 4021-4035.

    Sitkowski, M., & Kossin, J. P. (2009). An objective model for identifying secondary eyewall formation in hurricanes. Monthly Weather Review, 137(3), 876-892.

    Sun, Y. Q., Jiang, Y., Tan, B., & Zhang, F. (2013). The governing dynamics of the secondary eyewall formation of Typhoon Sinlaku (2008). Journal of the Atmospheric Sciences, 70(12), 3818-3837.

    Tan, Z.-M., & Qiu, X. (2013). The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. Journal of the Atmospheric Sciences, 70(3), 953-974.

    Terwey, W. D., & Montgomery, M. T. (2008). Secondary eyewall formation in two idealized, full‐physics modeled hurricanes. Journal of Geophysical Research: Atmospheres, 113(D12).

    Wang, Y.-F., & Tan, Z.-M. (2020). Outer rainbands–driven secondary eyewall formation of tropical cyclones. Journal of the Atmospheric Sciences, 77(6), 2217-2236.

    Willoughby, H. E., Clos, J. A., & Shoreibah, M. G. (1982). Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. Journal of the Atmospheric Sciences, 39(2), 395-411.

    Wu, C.-C., Wang, H., & Wang, Y. (2016). Secondary eyewall formation in an idealized tropical cyclone simulation: Balanced and unbalanced dynamics. Journal of the Atmospheric Sciences, 73(10), 3911-3930.

    Yu, C.-L., Didlake, A. C., Zhang, F., & Nystrom, R. G. (2021). Asymmetric rainband processes leading to secondary eyewall formation in a model simulation of Hurricane Matthew (2016). Journal of the Atmospheric Sciences, 78(1), 29-49.

    Yu, C.-L., Didlake, A. C., & Zhang, F. (2022). Updraft maintenance and axisymmetrization during secondary eyewall formation in a model simulation of Hurricane Matthew (2016). Journal of the Atmospheric Sciences, 79(4), 1105-1125.

    Zhang, C., & Wang, Y. (2017). Projected future changes of tropical cyclone activity over the Western North and South Pacific in a 20-km-Mesh Regional Climate Model. Journal of Climate, 30(15), 5923-5941.

    Zhu, X.-S., Yu, H., & Wang, Y. (2022). Downwind development in a stationary band complex leading to the secondary eyewall formation in the simulated Typhoon Soudelor (2015). Monthly Weather Review, 150(10), 2459-2483.

    Ziegler, C. L., Mansell, E. R., & Bruning, E. C. (2010). Simulated electrification of a Small thunderstorm with two-moment bulk microphysics. Journal of the Atmospheric Sciences, 67(1), 171-194.

    QR CODE
    :::