跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曹洧浪
Wei-Lang Tsao
論文名稱: 使用關聯性分析探勘生活習慣之 改變與血液化學檢測變化之關係
Discovering the relationships between the changes of lifestyles and blood chemistry differences using association rule mining.
指導教授: 吳立青
Wu, Li-Ching
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 系統生物與生物資訊研究所
Graduate Institute of Systems Biology and Bioinformatics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 69
中文關鍵詞: 關聯性分析血液化學檢測
外文關鍵詞: association rule mining, blood chemistry
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 飲食及運動對於許多疾病具有直接或間接的影響。例如代謝症
    候群、糖尿病以及心血管疾病。而這些影響會在血液檢測中得到顯現。
    例如高密度脂蛋白會降低得到心血管疾病的風險。本研究旨在發現飲
    食習慣以及運動習慣變化與血液檢測數值變化的關聯性。
    本研究利用聯新國際醫院自 2006 年到 2011 年收集的資料。資
    料收取 30 歲以上的群體,我們使用的變項包含 21 種身體檢查數值、
    10 種飲食習慣、有無運動習慣、性別以及年齡。我們將具有複數次檢
    查結果的群體找出,並合併得出生活習慣變化以及檢查數值變化幅度。
    我們使用一種機器學習技術,稱為關聯性分析,來尋找生活習慣改變
    與身體檢測數值的關聯性。
    在女性中我們找到 21 條規則。影響較多的生活習慣是喝咖啡有
    3 條、喝茶有 5 條、有運動 4 條。在男性中我們找到 20 條規則,影
    響較大的生活習慣則是吃點心有 4 條,喝豆漿有 4 條
    咖啡與總膽固醇上升成正相關在女性。多喝茶可以促進高密度
    脂蛋白上升來降低得到心血管疾病的風險,運動對於減重及降低心血
    管疾病風險因子有關。在男性方面。吃點心會增進心血管疾病因子上
    升,豆漿飲用量減少會導致膽固醇下降。


    Diet and exercise have a direct or indirect effect on many diseases.
    Examples include Metabolic syndrome (Mets), diabetes mellitus type 2
    (DMT2), and cardiovascular atherosclerotic diseases (CVD). These effects
    can be seen in blood chemistry tests. This study aimed to find the
    association between changes in diet and exercise and changes in blood
    chemistry test values.
    Our data was collected by Landseed international hospital from 2006
    to 2011. We used 21 physical examination values, 10 dietary habits,
    exercise, gender, and age. We identified groups with multiple test results
    and combined them to derive changes in lifestyle and test values. We use a
    machine learning technique called association rule mining to find the
    association between lifestyle changes and body test values.
    The result shows 21 rules in females. The more influential lifestyles
    are Coffee (3/21), Tea (5/21), and Exercise (4/21). Among men, The result
    shows 20 rules in males. The more influential lifestyle are dessert (4/20),
    soymilk (4/20) exercise (3/20).
    Coffee is positively associated with CHO rise (CVD risk factor) in
    women. Drinking more tea can promote the rise of HDL to reduce the risk
    of getting CVD, and exercise is related to weight loss and lower CVD risk
    factors. In men, Dessert increases CVD risk factors, and reduced soymilk
    consumption leads to a decrease in CHO and an increase in UA. Soymilk
    is negatively associated with GPT (liver function index). Stopping exercise
    increased BMI and CHO (CVD risk factor)

    Contents 中文摘要.........................................................................................i Abstract .........................................................................................ii 誌謝.............................................................................................. iii Contents........................................................................................iv Contents of table ..........................................................................vi Contents of Figure......................................................................viii 1. Introduction..........................................................................1 1.1 Disease and blood chemistry values...................................1 1.2 lifestyle and disease ...........................................................1 1.2.1 Diet ............................................................................................ 1 1.2.2 Exercise...................................................................................... 1 1.2.3 Smoke ........................................................................................ 1 1.2.4 Alcohol....................................................................................... 2 1.3 Motivation .........................................................................2 1.4 Goal...................................................................................2 2. Materials and Methods........................................................4 2.1 Process flow ......................................................................4 2.2 Data source........................................................................6 2.3 Data preprocessing ............................................................6 2.3.1 Feature ....................................................................................... 6 2.3.2 Data cleaning.............................................................................. 8 2.3.3 Data combination ....................................................................... 8 2.3.4 lifestyle change........................................................................... 8 2.3.5 Blood chemistry value trend ....................................................... 9 2.4 Association rule mining .....................................................9 v 2.4.1 Apriori algorithm...................................................................... 10 2.5 Python3 ...........................................................................10 2.5.1 SciPy........................................................................................ 10 2.5.2 Mlxtend.................................................................................... 10 3. Result ..................................................................................12 3.1 Lifestyle’s effect of blood chemistry................................12 3.1.1 Female...................................................................................... 12 3.1.2 Male ......................................................................................... 14 3.2 Data distribution after combination..................................15 3.2.1 Distribution of lifestyle change................................................. 15 3.2.2 Distribution of blood chemistry value trend .............................. 18 3.3 ARM result......................................................................20 3.3.1 Female...................................................................................... 20 3.3.2 Male ......................................................................................... 22 4. Discussion ...........................................................................24 4.1 Small number of single lifestyle change group ................24 4.2 The difference between the results of lifestyle and lifestyle change 24 4.3 Additives and types of coffee and tea...............................24 4.4 Same lifestyle has different effect in gender ....................25 4.5 Possible in future .............................................................25 Reference .....................................................................................27 Appendix .....................................................................................30

    1. Ference, B.A., et al., Low-density lipoproteins
    cause atherosclerotic cardiovascular disease. 1. Evidence
    from genetic, epidemiologic, and clinical studies. A
    consensus statement from the European Atherosclerosis
    Society Consensus Panel. Eur Heart J, 2017. 38(32): p.
    2459-2472.
    2. Vijan, S., In the clinic. Type 2 diabetes. Ann Intern
    Med, 2010. 152(5): p. ITC31-15; quiz ITC316.
    3. Widmer, R.J., et al., The Mediterranean diet, its
    components, and cardiovascular disease. Am J Med, 2015.
    128(3): p. 229-38.
    4. van Dam, R.M. and E.J. Feskens, Coffee
    consumption and risk of type 2 diabetes mellitus. Lancet,
    2002. 360(9344): p. 1477-8.
    5. Chang, H.C., et al., Changes in High-Density
    Lipoprotein Cholesterol Levels in Relation to Coffee
    Consumption Among Taiwanese Adults. J Multidiscip
    Healthc, 2020. 13: p. 1427-1432.
    6. Onuegbu, A.J., et al., Consumption of soymilk
    lowers atherogenic lipid fraction in healthy individuals. J
    Med Food, 2011. 14(3): p. 257-60.
    7. Warburton, D.E., C.W. Nicol, and S.S. Bredin,
    Health benefits of physical activity: the evidence. Cmaj,
    2006. 174(6): p. 801-9.
    8. Villella, M. and A. Villella, Exercise and
    cardiovascular diseases. Kidney Blood Press Res, 2014.
    39(2-3): p. 147-53.
    9. Lumb, A., Diabetes and exercise. Clin Med
    (Lond), 2014. 14(6): p. 673-6.
    10. van der Windt, D.J., et al., The Effects of Physical
    Exercise on Fatty Liver Disease. Gene Expr, 2018. 18(2): p.
    89-101.
    11. Cao, M. and W. Chen, Epidemiology of lung
    cancer in China. Thorac Cancer, 2019. 10(1): p. 3-7.
    12. Price, J., et al., Relationship between smoking and
    28
    cardiovascular risk factors in the development of peripheral
    arterial disease and coronary artery disease; Edinburgh
    Artery Study: Edinburgh Artery Study. European heart
    journal, 1999. 20(5): p. 344-353.
    13. Jonas, M.A., et al., Statement on smoking and
    cardiovascular disease for health care professionals.
    American Heart Association. Circulation, 1992. 86(5): p.
    1664-1669.
    14. Bolinder, G., et al., Smokeless tobacco use and
    increased cardiovascular mortality among Swedish
    construction workers. American Journal of Public Health,
    1994. 84(3): p. 399-404.
    15. Negri, E., et al., Tar yield of cigarettes and risk of
    acute myocardial infarction. GISSI-EFRIM Investigators.
    British Medical Journal, 1993. 306(6892): p. 1567-1570.
    16. Singal, A.K. and B.S. Anand, Recent trends in the
    epidemiology of alcoholic liver disease. Clinical Liver
    Disease, 2013. 2(2): p. 53.
    17. Mann, R.E., R.G. Smart, and R. Govoni, The
    epidemiology of alcoholic liver disease. Alcohol research &
    health, 2003. 27(3): p. 209.
    18. Mandayam, S., M.M. Jamal, and T.R. Morgan.
    Epidemiology of alcoholic liver disease. in Seminars in liver
    disease. 2004. Published in 2004 by Thieme Medical
    Publishers, Inc., 333 Seventh Avenue ….
    19. Mendenhall, C.L., Anabolic steroid therapy as an
    adjunct to diet in alcoholic hepatic steatosis. The American
    journal of digestive diseases, 1968. 13(9): p. 783-791.
    20. Frawley, W.J., G. Piatetsky-Shapiro, and C.J.
    Matheus, Knowledge Discovery in Databases: An Overview.
    AI Magazine, 1992. 13(3): p. 57.
    21. Hahsler, M., B. Grün, and K. Hornik, arules-A
    computational environment for mining association rules
    and frequent item sets. Journal of statistical software, 2005.
    14: p. 1-25.
    22. Virtanen, P., et al., SciPy 1.0: fundamental
    algorithms for scientific computing in Python. Nature
    29
    Methods, 2020. 17(3): p. 261-272.
    23. Raschka, S., MLxtend: Providing machine
    learning and data science utilities and extensions to
    Python's scientific computing stack. Journal of Open Source
    Software, 2018. 3(24): p. 638.
    24. Kondo, Y., et al., Effects of Coffee and Tea
    Consumption on Glucose Metabolism: A Systematic Review
    and Network Meta-Analysis. Nutrients, 2018. 11(1).
    25. Cornelis, M.C. and R.M. van Dam, Habitual
    Coffee and Tea Consumption and Cardiometabolic
    Biomarkers in the UK Biobank: The Role of Beverage Types
    and Genetic Variation. J Nutr, 2020. 150(10): p. 2772-2788.
    26. Nery, C., et al., Effectiveness of resistance exercise
    compared to aerobic exercise without insulin therapy in
    patients with type 2 diabetes mellitus: a meta-analysis. Braz
    J Phys Ther, 2017. 21(6): p. 400-415.
    27. Nassef, Y., et al., The Impact of Aerobic Exercise
    and Badminton on HDL Cholesterol Levels in Taiwanese
    Adults. Nutrients, 2020. 12(5

    QR CODE
    :::