跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林秉毅
Ping-Yi Lin
論文名稱: 不同土地利用資料對午後熱對流模擬的影響
指導教授: 林沛練
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣科學學系
Department of Atmospheric Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 85
中文關鍵詞: 都市熱島效應
外文關鍵詞: Urban heat island effect
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不同的土地利用不但會影響地表的能量收支,也會影響大氣和地表的交互作用,因此對區域天氣有顯著的影響,本論文主要在探討使用不同土地利用資料對於午後熱對流的模擬有何影響,影響的因素為何?並且針對台北地區做討論,論文中將使用三種土地利用資料,分別為U.S. Geological Survey(USGS)、Moderate Resolution Image Spectroradiometer(MODIS)以及NCU,這三種土地利用資料彼此有相當顯著的差異,MODIS在分類為都市的面積較其他兩者多,而NCU介於中間, USGS則是三者中分類為都市的面積最少的,整體上幾乎沒有都市分布,土地利用型態主要為灌溉地。

    在溫度模擬上,MODIS白天高溫區的分布最廣,由於MODIS中分類為都市的面積最廣,因此使得模擬的溫度較高,海陸溫差也最大導致海陸溫度梯度最大,於是模擬的海陸風強度也最強,NCU則是介於兩者之間,USGS分類為都市區域的面積相當少,因此模擬的溫度是三者中最低的,導致其模擬的海陸風強度最弱,由於三者海陸風之間的差異,對於水氣輸送通量也有影響,MODIS模擬的海陸風最強,因此其水氣輸送通量也較大,從外海輸送至台北盆地的水氣最多,NCU次之,而USGS最小,溫度模擬上的差異不僅反應在海陸風上,如同海陸風結果一樣,在台北盆地的上升運動MODIS最強烈,NCU次之,USGS最小,綜合上述因素,使得三者降雨的模擬產生差異。
    敏感度實驗分成地形高度和人工熱源兩個部分,地形高度部分是將陽明山地形移除,移除後發現三種土地利用資料的模擬結果都呈現類似的趨勢,台北盆地的風向從原本的西北風和東北風交匯,變成偏北風,主要是失去地形阻擋,導致北風更加深入台北盆地,使得水氣輸送更加順暢造成降雨增多。而人工熱源部分是開啟Urban canopy model將人工熱源設定為200〖w/m〗^2和400〖w/m〗^2。其中,將人工熱源提升後,MODIS和NCU受到顯著的影響,USGS則是沒有顯著的影響,這是由於人工熱源主要作用在都市,而MODIS和NCU整體分類為都市的面積較多,因此受到的影響較顯著,USGS則是分類為都市的面積較少,因此沒有顯著的影響。


    Different landuse datas not only affect the land surface energybudget, but also have a significant effect on regional weather simulation.This study will explore how different land usage has an effect on regional
    weather simulation. There are three kinds of landuse data — U.S.Geological Survey(USGS), Moderate Resolution Image
    Spectroradiometer (MODIS), and NCU. There are obvious differences between this three kinds of landuse data. MODIS’s urban area is much larger than the other two, mostly in the north, west coast, and southwest of
    Taiwan. NCU is basically in Taipei, I-Lan, west, and southwest. There are nearly non-urban areas in USGS, the main category is irrigated land.
    In the temperature simulation, the MODIS area of high temperature is the largest, because the urban area of MODIS is the largest. The biggest
    temperature difference of ocean and land leads to the steep gradients, so land-sea breeze is strongest. The temperature of USGS is lowest because it is lack of urban areas, so the land-sea breeze is the mildest. As a result, the strongest wind of MODIS transports the most vapor to the Taipei Basin. NCU is the second, and USGS is the least. As the strongest land-sea breeze, the ascending motiom of MODIS in the Taipei Basin is the most intense. NCU is second, and USGS is the mildest. With all factors, these three afternoon convections simulation are different.
    The sensitivity experiment is divided into two parts, terrain height and antropogenic heaeting. When remove Yangming mointain, the wind field simulations with three landuse datas have same trend. Without terrain
    block, wind direction change from northeast and northwest to north. Because that, north wind bring more moisture to Taipei area and cause heavy rain. When turn on urban canopy model, set antropogenic heating at
    200w/m2 and 400w/m2. MODIS and NCU have significant influence, but USGS does not.Because antropogenic heating work on urban area. USGS are lack of urban area, so it doesn’t have significant influence.

    摘要 i 致謝 iv 目錄 v 表目錄 vii 圖目錄 viii 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 1 1-3 研究目的 4 第二章 研究方法 6 2-1 研究使用資料 6 2-2 模式介紹 6 2-3 模式設定 8 第三章 結果與討論 9 3-1個案選取和介紹 9 3-2模擬結果比較 9 3-3敏感度實驗 14 第四章 結論與未來展望 18 4-1結論 18 4-2未來展望 21 第五章 參考文獻 23   表目錄 表1、USGS、NCU土地利用型態分類表 26 表2、MODIS土地利用型態分類表 27 表3、WRF模式模擬流程圖(取自WRF官網) 28   圖目錄 圖 1、都市熱島效應示意圖 29 圖2- 1、MODIS、NCU、USGS以及國土測繪局土地利用分布圖 30 圖2-2、MODIS、NCU、USGS北部土地利用分布圖 32 圖2-3、模式巢狀網格設定 34 圖3-1、2015年7月22日,(a)06LST、(b)14LST地面天氣圖 35 圖3-2、2015年7月23日,(a)06LST、(b)14LST地面天氣圖 36 圖3-3、2015年7月23日全天降雨累積圖 37 圖3-4、2015年7月23日,(a)1130LST、(b)1200LST、(c)1230LST、(d)1300LST 38 圖3-5、2015年7月23日850hpa,(a)06LST、(b)14LST 10M風場和相對溼度(shaded) 39 圖3-6、2015年7月23日14LST,(a)NCEP FNL、(b)MODIS 10M、(c)NCU、(d)USGS 10M風場(shaded為風速) 40 圖3-7、2015年7月23日, MODIS、NCU、USGS模擬、中央氣象局觀測的全天累積降雨 42 圖3-8、2015年7月23日, MODIS、NCU、USGS模擬、中央氣象局觀測的北部全天累積降雨 43 圖3-9、2015年7月23日,MODIS、NCU、USGS模擬、中央氣象局觀測的台北降雨起始時間 44 圖3-10、2015年7月23日12LST, MODIS、NCU、USGS模擬、中央氣象局觀測的溫度 45 圖3-11、2015年7月23日, MODIS、NCU、USGS模擬、中央氣象局觀測的 測站溫度變化 46 圖3-12、2015年7月23日12LST, MODIS、NCU、USGS模擬、中央氣象局觀測的北部風場 47 圖3-13、2015年7月23日, MODIS、NCU、USGS模擬海陸風差值 49 圖3-14、2015年7月23日12LST, MODIS、NCU、USGS模擬水氣輸送通量 50 圖3-15、2015年7月23日12LST, MODIS、NCU、USGS模擬結果的垂直剖面(LAT:25.037658) 52 圖3-16、2015年7月23日13~14LST, MODIS、NCU、USGS模擬界層發展高度 54 圖3-17、2015年7月23日12LST, MODIS、NCU、USGS模擬將陽明山地形移除後的風場 55 圖3-18、2015年7月23日12LST, MODIS、NCU、USGS模擬將陽明山地形移除後的風場-平均風場 57 圖3-19、2015年7月23日12LST, MODIS、NCU、USGS模擬將陽明山地形移除後的水氣輸送通量 59 圖3-20、2015年7月23日, MODIS、NCU、USGS模擬將陽明山地形移除後的北部全天累積降雨 61 圖3-21、2015年7月23日10LST~16LST, MODIS、NCU、USGS模擬人工熱源提升前後的平均溫度 63 圖3-22、2015年7月23日13LST, MODIS、NCU、USGS人工熱源提升前後模擬結果的垂直剖面 66 圖3-23、2015年7月23日, MODIS、NCU、USGS模擬人工熱源提升前後的全天累積降雨 69

    曹嘉宏,2007:台灣土地利用型態對 MM5 模擬局部環流之影
    響。國立中央大學碩士論文

    許志禎,2008:台灣土地利用型態對局部環流與降雨模擬之影
    響。國立中央大學碩士論文

    許郁卿,2011:土地利用對地表能量收支與海陸風模擬的影響。
    國立中央大學碩士論文

    戴俐卉,洪景山,莊秉潔,蔡徵霖,倪佩貞,2008:WRF 模式台
    灣地區土地利用類型之更新與個案研究。大氣科學,36,43-62

    Cotton, W. R., and R. A. Pielke, 1996: Human impacts on
    weather and climate. Cambridge University Press,
    pp.288.

    Chen, F., and J. Dudhia, 2001: Coupling an advanced land
    surface– hydrology model with the Penn State–NCAR MM5
    modeling system. Part I: Model implementation and
    sensitivity. Mon. Wea. Rev., 129, 569–585

    Chen, C. S, Y. L. Chen, 2003: The rainfall
    characteristics of Taiwan. Mon. Wea. Rev, 131, 1323–
    1341

    Chen, G. T. J., and H. C. Chou, 2006: A summertime
    severe weather event occurring in the Taipei Basin.
    TAO, 17, 3–22.

    Chen, T. C, S. Y. Wang, and M. C. Yen, 2007: Enhancement
    of afternoon thunderstorm activity by urbanization in a
    valley:Taipei. J. Appl. Meteor, 46,1324–1340,
    doi:10.1175/JAM2526

    Cheng, F. Y., Y. C. Hsu, P. L. Lin, and T. H. Lin, 2013: Investigation
    of the Effects of Different Land Use and Land Cover Patterns on
    Mesoscale Meteorological Simulations in the Taiwan Area.
    J.Appl. Meteor. Climatol., 52, 570–587

    Cheng, F. Y., Y. C. Hsu, P. L. Lin, and T. H. Lin, 2013:
    Investigation of the Effects of Different Land Use and
    Land Cover Patterns on Mesoscale Meteorological
    Simulations in the Taiwan Area. J.Appl. Meteor.
    Climatol., 52, 570–587

    Dudia, J., 1989: Numerical study of convection observed
    during the winter monsoon experiment using a mesoscale
    two-dimensional model. J. Atmos. Sci., 46, 3077-3107.

    Hong, S.-Y., and H. L. Pan, 1996: Nonlocal boundary layer
    vertical diffusion in a medium-range forecast model.
    Mon. Wea. Rev., 124, 2322 – 2339.

    Kain, J. S., and J.M. Fritsch, 1990: A one-dimensional
    entraining/detraining plume model and its application
    in convective parameterization. J. Atmos. Sci., 47,
    2784-2802.

    Lin, C-Y., W. C. Chen, Shaw. C. Liu, Y. A. Liou, G.R.
    Liu, T.-H. Lin, 2008b: Numerical study of the impact of
    urbanization on the precipitation over Taiwan,
    Atmospheric Environment, 42, 2934- 2947.

    Lin, C. Y., F. Chen, J. C. Huang, W.-C. Chen, Y. A. Liou,
    W. N. Chen, and S. C. Liu, 2008: Urban heat island
    effect and its impact on boundary layer development
    andland–sea circulation over northern Taiwan. Atmos.
    Environ., 42, 5635–5649

    Lim, K.-S. S., and S. Y. Hong, 2010: Development of an
    effective double-moment cloud microphysics scheme with
    prognostic cloud condensation nuclei (CCN) for weather
    and climate models. Mon. Wea. Rev., 138, 1587–1612.

    Lin C. Y., W. C. Chen, P. L. Chang, and Y. F. Sheng,
    2011: Impact of The urban heat island effect on
    precipitation over a complex geographic environment in
    northern Taiwan. J. Appl. Meteorol. Climatol., 50, 339–
    353, doi:10.1175/2010JAMC2504.1

    Lin, P. F., P. L. Chang, B. J. D. Jou, J. W. Wilson, and
    R. D. Roberts, 2011:Warm season afternoon thunderstorm
    characteristics under weak synoptic- scale forcing over
    Taiwan island. Wea. Forecasting, 26, 44–60

    Monin, A.S. and Obukhov, A.M. (1954) Basic Laws of
    Turbulent Mixing in the Surface Layer of the
    Atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR,
    24, 163-187.

    Mlawer, E.J., S.J. Taubman, P.D. Brown, M.J. Iacono, and
    S.A. Clough, 1996: Radiative transfer for
    inhomogeneous atmospheres: RRTM, a validated
    correlated-k model for the longwave, J. Geophys. Res.,
    submittd.

    QR CODE
    :::