跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳秉珊
Bing-Shan Wu
論文名稱: 空間性及時間性資訊變化對序列學習影響之探討
Exploring the Impact of Temporal and Spatial Variation on Motor Sequence Learning
指導教授: 張智宏
Erik Chihhung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 認知與神經科學研究所
Graduate Institute of Cognitive and Neuroscience
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 114
中文關鍵詞: 動作學習序列學習序列複雜度經顱直流電刺激
外文關鍵詞: Motor learning, Sequence learning, Sequence complexity, Transcranial direct current stimulation
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類能學會序列訊息中空間與時間的變化,在新的序列動作技能表現上逐漸進 步。在日常生活中透過反覆練習連續性的動作,人們可以流暢地彈琴樂器、溜 冰等。在實驗室中,序列反應時間作業是最常用來探討動作序列學習(motor sequence learning)的測驗類型。在過去文獻中,多數實驗探討隱藏在序列中的空 間性結構,但較少系統性的探討時間與空間變化對序列學習的影響。本論文的 研究目的是探討序列反應作業當中空間性序列與時間性序列訊息各自對序列學 習的貢獻以及兩者間的關係。實驗一控制不同空間序列的長度與複雜度,並計 算其在隨機序列與規則序列中的反應時間差作為學習指標,結果顯示序列的複 雜度主導序列學習的效果。實驗二比較不同複雜度序列的時間性序列學習,結 果指出時間性序列的學習也會被複雜度影響,且僅在高複雜度的序列當中觀察 到時間性序列學習的跡象。實驗三結合時間與空間的序列學習,控制兩個面向 的序列在同一複雜度下,測驗這兩個面向同時被學習的狀態,同時在異側的初 級運動皮質區上施打經顱直流電刺激(tDCS),再與假性施打電刺激的組別比 較。學習指標顯示,施打電刺激呈現出減弱整體序列以及空間性序列學習的效 果,但時間性序列的學習指標沒有反應出有無施打電刺激的差異。實驗四更改 檢驗時間性與空間性序列學習的後測,在後測階段只保留單一面向的序列資 訊,將其與完整的序列互相比較。結果顯示時間性與空間性序列能夠被同時學 習,也發現了顯著的相關性在空間性與時間性的學習指標間,指出時間性序列 學習被鍵結在空間性資訊之中。總結來說,本研究結果發現序列學習中的時間性與空間性資訊是互相整合、而非平行獨立的兩個學習面向。


    Motor sequence learning helps humans acquire new skills which require information about variation in spatial, temporal, or both domains. By repeating and practicing a series of actions, such as in dancing, martial arts, typing, and playing musical instruments, people can learn sequences of movements implicitly or explicitly and perform them more smoothly. The most commonly adopted paradigm in studying the acquisition process of sequence order is the Serial Reaction Time Task (SRTT). In the literature, SRTT has been mostly examined with the variation of spatial structures embedded in a sequence, but few sequence learning studies have systematically explored the impacts of varying temporal and spatial structures. The purpose of this study is to explore the respective contributions of spatial and temporal sequences and their interaction in SRTT. In the spatial domain, I controlled the length and complexity of sequences to different levels in Experiment 1. The learning effect, indexed by the difference between the Random and Regular reaction times (RTs), showed that the complexity of the sequences dominated the learning effect. In the temporal domain, I compared the learning of high and low complexity temporal sequences in Experiment 2, and the results indicated that the complexity of the sequence also affects learning of temporal sequences. In Experiment 3, I combined temporal and spatial sequence learning tested the simultaneous_ learning of both domains. Moreover, I compared the effect of applying transcranial direct current stimulation over the contralateral primary motor cortex with the sham group on learning. The outcomes showed that tDCS weakened the combined and spatial sequence learning. In Experiment 4, I modified the posttest for temporal and spatial sequence learning by maintaining the sequence information of one domain and removing the sequence information of the other domain. The results showed that both temporal, and spatial sequences can be learned simultaneously and there was a significant correlation between spatial and temporal learning indices, indicating that temporal sequence learning is linked to spatial information. Overall, this study suggests that temporal and spatial information are integrated in sequence learning, rather than being two parallel domains of learning.

    中文摘要 i Abstract iii Acknowledgments v Table of Content vi List of Figures ix Introduction 1 Serial Reaction Time Task (SRTT) 2 Learning in temporal domain 4 Research questions and predictions 6 Experiment 1: Sequence Complexity is a Valid factor of Sequence Learning in the Spatial Serial Reaction Time Task 10 Method 10 Participants 11 Design 11 Task, Stimuli, and Apparatus 14 Procedure 15 Data Analysis 16 Results 18 Discussion 22 Sequence learning in different sequence structure 23 Efficiency of sequence learning in different complexity 24 Experiment 2: How Does Sequence Complexity Affect Temporal Sequence Learning in Serial Reaction Time Task 26 Method 26 Participants 27 Design 27 Task, Stimuli, and Apparatus 30 Procedure 31 Data Analysis 32 Results 33 Discussion 36 Experiment 3: Apply Transcranial Direct Current Stimulation (tDCS) on Spatiotemporal Serial Reaction Time Task 39 Method 40 Participants 40 Design 41 Task, Stimuli and Apparatus 45 Procedure 45 Data Analysis 46 Results 48 Discussion 56 tDCS on the M1 area interfered sequence learning 56 Relationship among conditions of learning index 58 Posttest for the temporal domain 60 Experiment 4: Differentiate the spatial and temporal sequence learning with a domain-specific random sequence 62 Method 62 Participants 62 Design 63 Task, Stimuli, and Apparatus 65 Procedure 65 Data Analysis 66 Results 67 Discussion 74 Comparing two different methods of calculating learning index 76 General Discussion 79 Temporal sequence learning is not in line with expectations 81 Why spatial sequences are prioritized in the current experimental setup 82 Different effects of tDCS depending on the stimulated brain regions 83 Limitations 84 Implicit learning or explicit learning? 84 An appropriate length of time interval 86 Confounding factors in the tDCS experiment 87 Future Directions 89 Learning control of spatiotemporal sequences in a completely implicit state 89 Observing spatiotemporal sequence learning through auditory material 90 References 92

    Antal, A., Nitsche, M. A., Kincses, T. Z., Kruse, W., Hoffmann, K. P., & Paulus, W. (2004). Facilitation of visuo‐motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. European Journal of Neuroscience, 19(10), 2888-2892.
    Antal, A., & Paulus, W. (2012). Investigating neuroplastic changes in the human brain induced by transcranial direct (tDCS) and alternating current (tACS) stimulation methods. Clin EEG Neurosci, 43(3), 175. doi:10.1177/1550059412448030
    Bengtsson, S. L., Ullen, F., Ehrsson, H. H., Hashimoto, T., Kito, T., Naito, E., . . . Sadato, N. (2009). Listening to rhythms activates motor and premotor cortices. Cortex, 45(1), 62-71.
    Buchner, A., & Steffens, M. C. (2001). Auditory negative priming in speeded reactions and temporal order judgements. The Quarterly Journal of Experimental Psychology A, 54(4), 1125-1142. doi:10.1080/02724980143000109
    Coull, J. T., Cheng, R. K., & Meck, W. H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology, 36(1), 3-25. doi:10.1038/npp.2010.113
    Destrebecqz, A., & Cleeremans, A. (2001). Can sequence learning be implicit? New evidence with the process dissociation procedure. Psychonomic bulletin & review, 8(2), 343-350.
    Kaiser, T. (2017). dyncomp: an R package for Estimating the Complexity of Short Time Series.
    Kami, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545), 155-158.
    Karabanov, A., & Ullen, F. (2008). Implicit and explicit learning of temporal sequences studied with the process dissociation procedure. J Neurophysiol, 100(2), 733-739. doi:10.1152/jn.01303.2007
    Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychol Rev, 110(2), 316-339. doi:10.1037/0033-295x.110.2.316
    Keitel, A., Ofsteng, H., Krause, V., & Pollok, B. (2018). Anodal Transcranial Direct Current Stimulation (tDCS) Over the Right Primary Motor Cortex (M1) Impairs Implicit Motor Sequence Learning of the Ipsilateral Hand. Front Hum Neurosci, 12, 289. doi:10.3389/fnhum.2018.00289
    Kemeny, F., & Lukacs, A. (2019). Sequence in a sequence: Learning of auditory but not visual patterns within a multimodal sequence. Acta Psychol (Amst), 199, 102905. doi:10.1016/j.actpsy.2019.102905
    Kobayashi, M., Théoret, H., & Pascual‐Leone, A. (2009). Suppression of ipsilateral motor cortex facilitates motor skill learning. European Journal of Neuroscience, 29(4), 833-836.
    Lu, X., & Ashe, J. (2005). Anticipatory activity in primary motor cortex codes memorized movement sequences. Neuron, 45(6), 967-973.
    Madhavan, S., & Shah, B. (2012). Enhancing motor skill learning with transcranial direct current stimulation–a concise review with applications to stroke. Frontiers in psychiatry, 3, 66.
    Mayr, U. (1996). Spatial attention and implicit sequence learning: evidence for independent learning of spatial and nonspatial sequences. Journal of experimental psychology: learning, memory, and cognition, 22(2), 350.
    Mioni, G., Stablum, F., & Grondin, S. (2014). Interval discrimination across different duration ranges with a look at spatial compatibility and context effects. Front Psychol, 5, 717. doi:10.3389/fpsyg.2014.00717
    Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., . . . Hallett, M. (2002). Early consolidation in human primary motor cortex. Nature, 415(6872), 640-644.
    Nazzaro, J. R., & Nazzaro, J. N. (1970). Auditory versus visual learning of temporal patterns. Journal of Experimental Psychology, 84(3), 477.
    Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive psychology, 19(1), 1-32.
    Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., . . . Paulus, W. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of physiology, 553(1), 293-301.
    O’Reilly III, C. A., & Tushman, M. L. (2008). Ambidexterity as a dynamic capability: Resolving the innovator's dilemma. Research in organizational behavior, 28, 185-206.
    Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97-113.
    Olson, I. R., Page, K., Moore, K. S., Chatterjee, A., & Verfaellie, M. (2006). Working memory for conjunctions relies on the medial temporal lobe. Journal of Neuroscience, 26(17), 4596-4601.
    Pascual-Leone, A., Valls-Solé, J., Wassermann, E. M., & Hallett, M. (1994). Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain, 117(4), 847-858.
    Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., . . . Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior research methods, 51(1), 195-203.
    Reed, J., & Johnson, P. (1994). Assessing implicit learning with indirect tests: Determining what is learned about sequence structure. Journal of experimental psychology: learning, memory, and cognition, 20(3), 585.
    Robertson, E. M. (2007). The serial reaction time task: implicit motor skill learning? J Neurosci, 27(38), 10073-10075. doi:10.1523/JNEUROSCI.2747-07.2007
    Rosenthal, R., & Rosnow, R. L. (2009). Artifacts in behavioral research: Robert Rosenthal and Ralph L. Rosnow's classic books: Oxford University Press.
    Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A., & Group, S. o. T. C. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical neurophysiology, 120(12), 2008-2039.
    Rossignol, S., & Jones, G. M. (1976). Audio-spinal influence in man studied by the H-reflex and its possible role on rhythmic movements synchronized to sound. Electroencephalography and clinical neurophysiology, 41(1), 83-92.
    Salidis, J. (2001). Nonconscious temporal cognition: Learning rhythms implicitly. Memory & Cognition, 29(8), 1111-1119.
    Schaffert, N., Janzen, T. B., Mattes, K., & Thaut, M. H. (2019). A review on the relationship between sound and movement in sports and rehabilitation. Frontiers in psychology, 10, 244.
    Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37(6), 1013-1025.
    Schiepek, G., & Strunk, G. (2010). The identification of critical fluctuations and phase transitions in short term and coarse-grained time series-a method for the real-time monitoring of human change processes. Biol Cybern, 102(3), 197-207. doi:10.1007/s00422-009-0362-1
    Schultz, B. G., Stevens, C. J., Keller, P. E., & Tillmann, B. (2013). The implicit learning of metrical and nonmetrical temporal patterns. Q J Exp Psychol (Hove), 66(2), 360-380. doi:10.1080/17470218.2012.712146
    Schumacher, E. H., & Schwarb, H. (2009). Parallel response selection disrupts sequence learning under dual-task conditions. J Exp Psychol Gen, 138(2), 270-290. doi:10.1037/a0015378
    Schwarb, H., & Schumacher, E. H. (2010). Implicit sequence learning is represented by stimulus-response rules. Mem Cognit, 38(6), 677-688. doi:10.3758/MC.38.6.677
    Schwarb, H., & Schumacher, E. H. (2012). Generalized lessons about sequence learning from the study of the serial reaction time task. Adv Cogn Psychol, 8(2), 165-178. doi:10.2478/v10053-008-0113-1
    Shanks, D. R., & Johnstone, T. (1998). Implicit knowledge in sequential learning tasks.
    Shanks, D. R., Rowland, L. A., & Ranger, M. S. (2005). Attentional load and implicit sequence learning. Psychological research, 69(5), 369-382.
    Shin, J. C., & Ivry, R. B. (2002). Concurrent learning of temporal and spatial sequences. J Exp Psychol Learn Mem Cogn, 28(3), 445-457. doi:10.1037//0278-7393.28.3.445
    Stadler, M. A. (1995). Role of attention in implicit learning. Journal of experimental psychology: learning, memory, and cognition, 21(3), 674.
    Stagg, C. J., O'Shea, J., Kincses, Z. T., Woolrich, M., Matthews, P. M., & Johansen-Berg, H. (2009). Modulation of movement-associated cortical activation by transcranial direct current stimulation. Eur J Neurosci, 30(7), 1412-1423. doi:10.1111/j.1460-9568.2009.06937.x
    Thaut, M. H., & Abiru, M. (2010). Rhythmic auditory stimulation in rehabilitation of movement disorders: a review of current research. Music Perception, 27(4), 263-269.
    Ungerleider, L. G., Doyon, J., & Karni, A. (2002). Imaging brain plasticity during motor skill learning. Neurobiology of learning and memory, 78(3), 553-564.
    Van Selst, M., & Jolicoeur, P. (1994). A solution to the effect of sample size on outlier elimination. The Quarterly Journal of Experimental Psychology Section A, 47(3), 631-650.
    Warren, J. E., Wise, R. J., & Warren, J. D. (2005). Sounds do-able: auditory–motor transformations and the posterior temporal plane. Trends in neurosciences, 28(12), 636-643.
    Wilkinson, L., Teo, J. T., Obeso, I., Rothwell, J. C., & Jahanshahi, M. (2010). The contribution of primary motor cortex is essential for probabilistic implicit sequence learning: evidence from theta burst magnetic stimulation. Journal of cognitive neuroscience, 22(3), 427-436.
    Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the development of procedural knowledge. Journal of experimental psychology: learning, memory, and cognition, 15(6), 1047.
    Wuyts, I. J., & Buekers, M. J. (1995). The effects of visual and auditory models on the learning of a rhythmical synchronization dance skill. Research Quarterly for Exercise and Sport, 66(2), 105-115.

    QR CODE
    :::