跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鍾詩盈
Shih-Ying Chung
論文名稱: Bhlhe40減緩PGC-1α在肌肉細胞中的協同
Bhlhe40 compromises the coactivational function of PGC-1α in myogenic cells
指導教授: 陳盛良
Shen-Liang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
畢業學年度: 100
語文別: 中文
論文頁數: 118
中文關鍵詞: 能量代謝協同活化
外文關鍵詞: PGC-1α, Bhlhe40, myogenic cell
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α) 是當細胞受到外在環境刺激 (如:冷) 會被大量誘導表現,且其表現的形式與調控細胞能量代謝與適應性產熱有關。在本實驗室的研究中發現Bhlhe40,這個可被retinoic acid所誘導的basic helix-loop-helix蛋白質,可以抑制MyoD活化PGC-1α promoter的能力。而細胞內調控Bhlhe40的表現量會因不同類型的細胞面對不同生理的變化過程而有所差異,包括生理節律時鐘、缺氧、細胞分化等。此外,本實驗室目前發現PGC-1α與Bhlhe40無論是在in vitro或是in vivo中都具有很強的結合能力,我們同時也發現在PPARγ活化UCP-1 promoter的調控上,Bhlhe40對於PGC-1α協同活化PPARγ具有拮抗的功能,而此拮抗的效果會因PGC-1α的表現量足夠而被恢復。除此之外,Bhlhe40需要與HDAC-corepressor 進行交互作用的domain才具有此拮抗的功能。而PGC-1α與Bhlhe40這兩個轉錄因子主要利用兩者的N端進行交互作用。我們也發現PGC-1α與Bhlhe40這兩個因子表現的形式,在運動後的老鼠肌肉中或是當細胞處於缺氧狀態下會有所不同,證明在肌肉細胞能量代謝中,由Bhlhe40抑制 PGC-1α協同活化功能具有重要的生理意義。


    The expression pattern and induction by cold-exposure have implicated peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α) in the regulation of metabolism and adaptive thermogenesis. Our recent studies have found that Bhlhe40, a retinoic acid-inducible gene encoding a basic helix-loop-helix (bHLH) protein, can repress MyoD activated PGC-1α promoter. The expression of Bhlhe40 is regulated in a cell type-specific manner in various biological processes, including circadian rhythms, hypoxia, and cellular differentiation. Furthermore, our preliminary works found that PGC-1α and Bhlhe40 had strong binding affinity both in vitro and in vivo. We also found that Bhlhe40 antagonizes the coactivational effect of PGC-1α on PPARγ activated UCP-1 promoter and this antagonism can be relieved when saturation amount of PGC-1α is present. And this antagonistic effects require the HDAC-corepressor interaction domain of Bhlhe40. The interacting domains in PGC-1α and Bhlhe40 have been localized to the N-terminus of these two factors. Distinct expression patterns of these two factors were observed in muscles of exercised mice and in cells kept in hypoxia, demonstrating the physiological importance of Bhlhe40-mediated repression of PGC-1α in muscle metabolism.

    目錄 中文摘要 VI Abstract VII 誌謝 VIII 一、 緒論 1 1-1 肌肉的組成 1 1-2 PGC-1α ( Peroxisome Proliferative Activated Receptor γ Coactivator 1) 2 1-3 Basic helix-loop-helix family member e40 (Bhlhe40) 6 1-4 研究動機與目的 8 二、 材料與方法 10 2-1 細胞株 10 2-2 質體構築 (Cloning) 與轉型作用 (Transformation) 11 2-2-1 質體構築 11 2-2-2 插入 (Insert) DNA的純化 14 2-2-3 載體 DNA的 5’端去磷酸根反應 (C.I.P)與純化 15 2-2-4 接合反應 (Ligation) 15 2-2-5 大腸桿菌的轉型作用 (Transformation) 15 2-3 RT-PCR 15 2-3-1 Total RNA 製備: 15 2-3-2 反轉錄酶反應 (Reverse Transcriptase, RT) 16 2-3-3聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 16 2-4 Real Time PCR 定量實驗 17 2-5 轉染實驗 18 2-5-1 細胞培養 18 2-5-2 轉染作用 (Transfection) 18 2-5-3 螢火蟲冷光活性方法 (Luciferase Activity Assay) 18 2-6 蛋白質標定 19 2-7 蛋白質純化 19 2-7-1 轉型作用 19 2-7-2 蛋白質表現及純化 19 2-8 GST pull down assay 20 2-9 免疫共沉澱法 (Co-immunoprecipitation) 21 2-9-1 Protein A from Staphylococcus aures製備 21 2-9-2 Protein A from Staphylococcus aures buffer置換 22 2-9-3 Co-immunoprecipitation 22 2-10 西方墨點實驗 (Western blot) 22 2-10-1 Total Protein Lysate 的製備 22 2-10-2 SDS-polyacrylamide Gel Electropheresis 23 2-10-3 Blocking 以及 Antibody 辨識 23 2-10-4 蛋白質脫附 (Striping) 24 2-11動物實驗 24 2-12 mouse Bhlhe40 抗體製備 24 2-12-1 pET-32b-mBhlhe40 (259-411a.a) 質體建構 24 2-12-2 誘導mBhlhe40 抗原蛋白表現 24 2-12-3 mBhlhe40 抗原蛋白質的純化 25 2-12-4抗原蛋白質的濃縮 26 2-12-5 利用SDS-PAGE純化抗原蛋白質 26 2-12-4 誘導宿主免疫反應 27 2-12-5 抗體純化 27 2-13 免疫染色 (Immunohistochemistry) 28 三、 實驗結果 29 3-1 在細胞中,Bhlhe40 與PGC-1α是否可以進行交互作用 29 3-2 Bhlhe40對於PGC-1α協同活化Thyroid Hormone Receptor β (TRβ) 的轉錄調控 29 3-3 Bhlhe40對於PGC-1α標的基因PDK4及UCP-1 啟動子的影響 30 3-4 Bhlhe40抑制PGC-1α標的基因是否被PGC-1α dose-dependent rescue 32 3-5 在in vitro中,PPARγ、PGC-1α與Bhlhe40三者結合的情形,以及Bhlhe40 是否利用競爭的方式影響PGC-1α與PPARγ之間的親和性 32 3-6 Bhlhe40抑制PGC-1α協同活化功能是否經由recuit Histone deacetylase (HDAC) complex 影響PGC-1α標的基因轉錄活性 34 3-7 Bhlhe40不同deletion form對於抑制PGC-1α協同活化基因轉錄功能的影響,以及在in vitro中,不同deletion form 的Bhlhe40 與PGC-1α交互作用的情形 36 3-8 C2C12 myotube處於不同培養情況中,PGC-1α、Bhlhe40以及相關基因表現量 38 3-9 老鼠在長期耐力訓練後PGC-1α與Bhlhe40的表現量 38 3-9 His-tagged Bhlhe40抗原蛋白 39 3-10 兔子免疫前血漿、免疫四次後之血漿以及免疫六次後之血清測試 40 3-11 C2C12 Py vector與C2C12 Py-Bhlhe40-Flag穩定細胞株處理不同的compounds,其肌肉細胞分化情形。 41 四、 討論 43 五、 圖表 49 圖一、 在細胞中,Bhlhe40 可與PGC-1α相互結合 49 圖二、 Bhlhe40對於PGC-1α協同活化Thyroid Hormone Receptor β (TRβ) 的轉錄調控 51 圖三、 Bhlhe40對於PGC-1α標的基因PDK4及UCP-1 啟動子的影響 53 圖四、 Bhlhe40抑制PGC-1α標的基因是否會受PGC-1α dose-dependent的影響 54 圖五、 在in vitro中,PPARγ、PGC-1α與Bhlhe40三者結合的情形 56 圖六、 在in vitro中,Bhlhe40 是否利用競爭結合的方式影響PGC-1α與PPARγ之間的親和性 58 圖七、 Bhlhe40利用1-135 amino acid與PGC-1α結合對於下游基因轉錄活性的影響 60 圖八、 Bhlhe40抑制PGC-1α協同活化功能是否經由recuit Histone deacetylase (HDAC) complex 影響PGC-1α標的基因轉錄活性 62 圖九、 Bhlhe40不同deletion form對於抑制PGC-1α協同活化基因轉錄功能的影響 64 圖十、 在in vitro中,不同deletion form 的Bhlhe40 與PGC-1α交互作用的情形 65 圖十一、 C2C12 myotube處於Normoxia (21 % O2) 或Hypoxia (1% O2) , 以及培養液為20 % FBS DMEM或HBSS,不同情形之中PGC-1α、Bhlhe40以及相關基因表現量 66 圖十二、 老鼠在長期耐力訓練後PGC-1α與Bhlhe40的表現量 68 圖十三、製作His-tagged Bhlhe40抗原蛋白 70 圖十四、兔子免疫前血漿、免疫四次後之血漿以及免疫六次後之血清測試 73 圖十五、C2C12 Py vector與C2C12 Py-Bhlhe40-Flag穩定細胞株處理不同分化劑,其肌肉細胞分化情形 75 六、 參考文獻 76 附錄一 81 附錄二 86 附錄三 94 附錄四 96 附錄五 97 附錄六 98 1. Primer對照表 98 2. 縮寫與全名對照表 100 3. 溶劑與試劑配方 101

    1. Arany Z (2008) PGC-1 coactivators and skeletal muscle adaptations in health and disease. Curr Opin Genet Dev 18: 426-434
    2. Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451: 1008-1012
    3. Attia RR, Connnaughton S, Boone LR, Wang F, Elam MB, Ness GC, Cook GA, Park EA (2010) Regulation of pyruvate dehydrogenase kinase 4 (PDK4) by thyroid hormone: role of the peroxisome proliferator-activated receptor gamma coactivator (PGC-1 alpha). J Biol Chem 285: 2375-2385
    4. Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, Holloszy JO (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 16: 1879-1886
    5. Boudjelal M, Taneja R, Matsubara S, Bouillet P, Dolle P, Chambon P (1997) Overexpression of Stra13, a novel retinoic acid-inducible gene of the basic helix-loop-helix family, inhibits mesodermal and promotes neuronal differentiation of P19 cells. Genes Dev 11: 2052-2065
    6. Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM (1998) Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J 329 ( Pt 1): 191-196
    7. Chang JH, Lin KH, Shih CH, Chang YJ, Chi HC, Chen SL (2006) Myogenic basic helix-loop-helix proteins regulate the expression of peroxisomal proliferator activated receptor-gamma coactivator-1alpha. Endocrinology 147: 3093-3106
    8. Charest-Marcotte A, Dufour CR, Wilson BJ, Tremblay AM, Eichner LJ, Arlow DH, Mootha VK, Giguere V (2010) The homeobox protein Prox1 is a negative modulator of ERR{alpha}/PGC-1{alpha} bioenergetic functions. Genes Dev 24: 537-542
    9. Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoag J, Rowe GC, Sawada N, Raghuram S, Arany Z (2009) The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci U S A 106: 21401-21406
    10. Ewton DZ, Roof SL, Magri KA, McWade FJ, Florini JR (1994) IGF-II is more active than IGF-I in stimulating L6A1 myogenesis: greater mitogenic actions of IGF-I delay differentiation. J Cell Physiol 161: 277-284
    11. Gundersen K (2011) Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev Camb Philos Soc 86: 564-600
    12. Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A 100: 7111-7116
    13. Holness MJ, Bulmer K, Gibbons GF, Sugden MC (2002) Up-regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) protein expression in oxidative skeletal muscle does not require the obligatory participation of peroxisome-proliferator-activated receptor alpha (PPARalpha). Biochem J 366: 839-846
    14. Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, Kato Y, Honma K (2002) Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419: 841-844
    15. Hood DA (2001) Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90: 1137-1157
    16. Hsiao SP, Huang KM, Chang HY, Chen SL (2009) P/CAF rescues the Bhlhe40-mediated repression of MyoD transactivation. Biochem J 422: 343-352
    17. Iizuka K, Horikawa Y (2008) Regulation of lipogenesis via BHLHB2/DEC1 and ChREBP feedback looping. Biochem Biophys Res Commun 374: 95-100
    18. Inuzuka H, Nanbu-Wakao R, Masuho Y, Muramatsu M, Tojo H, Wakao H (1999) Differential regulation of immediate early gene expression in preadipocyte cells through multiple signaling pathways. Biochem Biophys Res Commun 265: 664-668
    19. Ivanova AV, Ivanov SV, Danilkovitch-Miagkova A, Lerman MI (2001) Regulation of STRA13 by the von Hippel-Lindau tumor suppressor protein, hypoxia, and the UBC9/ubiquitin proteasome degradation pathway. J Biol Chem 276: 15306-15315
    20. Kawakami Y, Tsuda M, Takahashi S, Taniguchi N, Esteban CR, Zemmyo M, Furumatsu T, Lotz M, Belmonte JC, Asahara H (2005) Transcriptional coactivator PGC-1alpha regulates chondrogenesis via association with Sox9. Proc Natl Acad Sci U S A 102: 2414-2419
    21. Knutti D, Kaul A, Kralli A (2000) A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol Cell Biol 20: 2411-2422
    22. Knutti D, Kralli A (2001) PGC-1, a versatile coactivator. Trends Endocrinol Metab 12: 360-365
    23. Kressler D, Schreiber SN, Knutti D, Kralli A (2002) The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem 277: 13918-13925
    24. Lecomte V, Meugnier E, Euthine V, Durand C, Freyssenet D, Nemoz G, Rome S, Vidal H, Lefai E (2010) A new role for sterol regulatory element binding protein 1 transcription factors in the regulation of muscle mass and muscle cell differentiation. Mol Cell Biol 30: 1182-1198
    25. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1: 361-370
    26. Lin J, Tarr PT, Yang R, Rhee J, Puigserver P, Newgard CB, Spiegelman BM (2003) PGC-1beta in the regulation of hepatic glucose and energy metabolism. J Biol Chem 278: 30843-30848
    27. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418: 797-801
    28. Liu C, Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447: 477-481
    29. Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP, Spiegelman BM (2001) Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci U S A 98: 3820-3825
    30. Monsalve M, Wu Z, Adelmant G, Puigserver P, Fan M, Spiegelman BM (2000) Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell 6: 307-316
    31. Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, Yang W, Altshuler D, Puigserver P, Patterson N, Willy PJ, Schulman IG, Heyman RA, Lander ES, Spiegelman BM (2004) Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci U S A 101: 6570-6575
    32. Pilegaard H, Neufer PD (2004) Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise. Proc Nutr Soc 63: 221-226
    33. Pilegaard H, Saltin B, Neufer PD (2003) Effect of short-term fasting and refeeding on transcriptional regulation of metabolic genes in human skeletal muscle. Diabetes 52: 657-662
    34. Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O''Malley B, Spiegelman BM (1999) Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286: 1368-1371
    35. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829-839
    36. Rochat A, Fernandez A, Vandromme M, Moles JP, Bouschet T, Carnac G, Lamb NJ (2004) Insulin and wnt1 pathways cooperate to induce reserve cell activation in differentiation and myotube hypertrophy. Mol Biol Cell 15: 4544-4555
    37. Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, Meier CA, Bell DR, Kralli A, Giacobino JP, Deriaz O (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52: 2874-2881
    38. Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, Podvinec M, Oakeley EJ, Kralli A (2004) The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A 101: 6472-6477
    39. Sears IB, MacGinnitie MA, Kovacs LG, Graves RA (1996) Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor gamma. Mol Cell Biol 16: 3410-3419
    40. Shao D, Liu Y, Liu X, Zhu L, Cui Y, Cui A, Qiao A, Kong X, Chen Q, Gupta N, Fang F, Chang Y (2010) PGC-1 beta-regulated mitochondrial biogenesis and function in myotubes is mediated by NRF-1 and ERR alpha. Mitochondrion 10: 516-527
    41. Shen M, Kawamoto T, Yan W, Nakamasu K, Tamagami M, Koyano Y, Noshiro M, Kato Y (1997) Molecular characterization of the novel basic helix-loop-helix protein DEC1 expressed in differentiated human embryo chondrocytes. Biochem Biophys Res Commun 236: 294-298
    42. Song S, Attia RR, Connaughton S, Niesen MI, Ness GC, Elam MB, Hori RT, Cook GA, Park EA (2010) Peroxisome proliferator activated receptor alpha (PPARalpha) and PPAR gamma coactivator (PGC-1alpha) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements. Mol Cell Endocrinol 325: 54-63
    43. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127: 397-408
    44. Sugden MC, Kraus A, Harris RA, Holness MJ (2000) Fibre-type specific modification of the activity and regulation of skeletal muscle pyruvate dehydrogenase kinase (PDK) by prolonged starvation and refeeding is associated with targeted regulation of PDK isoenzyme 4 expression. Biochem J 346 Pt 3: 651-657
    45. Sun H, Li L, Vercherat C, Gulbagci NT, Acharjee S, Li J, Chung TK, Thin TH, Taneja R (2007) Stra13 regulates satellite cell activation by antagonizing Notch signaling. J Cell Biol 177: 647-657
    46. Sun H, Taneja R (2000) Stra13 expression is associated with growth arrest and represses transcription through histone deacetylase (HDAC)-dependent and HDAC-independent mechanisms. Proc Natl Acad Sci U S A 97: 4058-4063
    47. van der Velden JL, Langen RC, Kelders MC, Wouters EF, Janssen-Heininger YM, Schols AM (2006) Inhibition of glycogen synthase kinase-3beta activity is sufficient to stimulate myogenic differentiation. Am J Physiol Cell Physiol 290: C453-462
    48. Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG (2003) Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha. Mol Cell 12: 1137-1149
    49. Wende AR, Huss JM, Schaeffer PJ, Giguere V, Kelly DP (2005) PGC-1alpha coactivates PDK4 gene expression via the orphan nuclear receptor ERRalpha: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol 25: 10684-10694
    50. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115-124
    51. Yamada K, Kawata H, Shou Z, Mizutani T, Noguchi T, Miyamoto K (2003) Insulin induces the expression of the SHARP-2/Stra13/DEC1 gene via a phosphoinositide 3-kinase pathway. J Biol Chem 278: 30719-30724
    52. Yamada K, Ogata-Kawata H, Matsuura K, Miyamoto K (2005) SHARP-2/Stra13/DEC1 as a potential repressor of phosphoenolpyruvate carboxykinase gene expression. FEBS Lett 579: 1509-1514
    53. Yang J, Williams RS, Kelly DP (2009) Bcl3 interacts cooperatively with peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator 1alpha to coactivate nuclear receptors estrogen-related receptor alpha and PPARalpha. Mol Cell Biol 29: 4091-4102
    54. Yun Z, Maecker HL, Johnson RS, Giaccia AJ (2002) Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell 2: 331-341
    55. Zhang Y, Ma K, Song S, Elam MB, Cook GA, Park EA (2004) Peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) enhances the thyroid hormone induction of carnitine palmitoyltransferase I (CPT-I alpha). J Biol Chem 279: 53963-53971

    QR CODE
    :::