跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱建宏
Chien-Hung Chiu
論文名稱: 濾波器組多載波傳輸系統之快速傅立葉轉換/反快速傅立葉轉換設計與實現
FFT/IFFT Design and Implementation for FBMC Transmission System
指導教授: 薛木添
Muh-Tian Shiue
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 56
中文關鍵詞: 記憶體式快速傅立葉轉換基數2濾波器组多載波
外文關鍵詞: Memory-based, FFT, Radix-2, FBMC
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正交分頻多工器主要是利用所有的子載波正交特性進行調變,並利用循環字首(cyclic prefix)來消除符元間干擾及載波間干擾,而濾波器組多載波(Filter Bank Multicarrier, FBMC)傳輸技術只需要維持和相鄰子載波之間的正交特性即可。因此,為了保持濾波器組多載波系統正交特性和提高頻寬使用率,將會使用偏移正交振幅調變(Offset Quadrature Amplitude Modulation, OQAM)。有鑒於採樣濾波器的良好振幅響應和微小的旁瓣干擾。使用頻率採樣濾波器,將偏移正交振幅調變和頻率採樣濾波器组結合,我們將不再需要使用循環字首進而得到更好的頻寬使用率。
    在濾波器組的部分,傳送端為合成濾波器组(Synthesis filter bank),可以得到一個很直觀的演算法,然後可用反離散傅立葉轉換實現。接收端為分析濾波器組(Analysis filter bank),則用離散傅立葉轉換實現。濾波器组可拆解成多相位網路濾波器與快速傅立葉轉換處理器,在系統所需速度不快的情況下,採用了記憶體式快速傅立葉轉換處理器,將傳送端與接收端的多相位網路濾波器與快速傅立葉轉換處理器整合。
    本論文使用同質性可組態記憶體式快速傅立葉轉換處理器,重新檢視基數2快速傅立葉轉換演算法,並重新探討傳統的信號流程圖,進而發展出另一種信號流程圖的表示法,其中我們證明了輸入資料的改變,並不會喪失原有的快速傅立葉轉換數學運算性。因此,這樣的信號流程圖表示法,可以容易地得到一同質性之運算並行式結構的可組態式快速傅立葉轉換處理器之架構,藉此提高吞吐量。同時仍保有記憶體式架構優於管線式架構面積小的優勢,提升原有記憶體式架構之速度,且易於控制。


    In OFDM, IFFT and cyclic prefix to avoid the circular convolution aliasing are usually used to ensure the orthogonality for all subchannels, while FBMC only requires orthogonality with adjacent subchannels. In order to fully exploit channel bandwidth, modulations in the subchannels must adapt to the neighbor orthogonality constraint, so Offset Quadrature Amplitude Modulation (OQAM) is used for this purpose. Frequency selective filter is accomplished by using longer and spectrally well-shaped prototype filters, and because of frequency selective filter, the sidelobe levels are lower comparing to OFDM. Combination of filter banks and OQAM modulation result in no need for guard time or cyclic prefix like OFDM, leading to higher bandwidth efficiency. In general, this technique is called Filter Bank Multicarrier (FBMC) technique.
    In FBMC system, the transmitter is called synthesis filter bank. We can get an intuitive algorithm, implemented by Inverse Discrete Fourier Transform. Then, the receiver is called analysis filter bank, implemented by using Discrete Fouier Transform. Filter banks consists of Polyphase Network (PPN) filter and FFT processor, we. Because the condition of the system speed demand is not fast, we choose the memory-based IFFT/FFT processor. Finally, PPN filter and IFFT/FFT processor are combined in transmitter and receiver.
    This dissertation presents a reconfigurable homogeneous memory-based FFT processor architecture. Specifically, this thesis reinvestigates a radix-2 FFT algorithm and rearranges an alternative signal flow graph (SFG) from conventional SFGs. By developing the alternative SFG, this thesis proves that the altered permutation of input data can maintain the original functionality of FFT computation. Consequently, the alternative SFG is readily realized as the architecture of homogeneous parallel structure with multiple processing elements to increase throughput. However, the proposed design retains the advantage of a small area for the memory-based architecture, and achieves the goals of fast operation and ease of control.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 2 第二章 濾波器組多載波介紹 3 2.1 正交分頻多工調變介紹 4 2.1.1 正交分頻多工器電路架構 5 2.1.2 FBMC與OFDM比較 6 2.2 濾波器組多載波傳輸多工器介紹 7 2.2.1 偏移正交振幅調變(OQAM) 8 2.2.2 合成濾波器組與分析濾波器組 10 第三章 同質性平行記憶體式FFT處理器設計[6] 13 3.1 單一運算元件記憶體式FFT處理器發展 13 3.1.1 訊號流程圖表示法 13 3.1.2 輸入資料組演算法 19 3.1.3 MBFFT1 架構 23 3.2 平行記憶體式FFT處理器發展 26 3.2.1 MBFFTP2 架構 26 3.2.2 MBFFTP4 架構 27 3.3 總結 28 第四章 傳送端IFFT和接收端FFT設計 29 4.1 Continuous flow MBFFTP4架構 30 4.2 傳送端IFFT設計 33 4.3 接收端FFT設計 35 第五章 模擬結果與電路比較 37 5.1 定點數分析 37 5.2 模擬結果驗證 38 第六章 結論與未來展望 42 參考文獻 43

    [1] D. Matiæ, “OFDM as a possible modulation technique for multimedia applications in the range of mm waves,” TUD-TVS, Oct. 1998J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightw. Technol., vol. 25, no. 1, pp. 131–138, Jan. 2008.
    [2] A.Peled and A. Ruiz, “Frequency domain data transmission using reduced computational complexity algorithms,” in Proc. IEEE International Conference on ICASSP, vol. 5, April, 1980, pp. 964-967.
    [3] FBMC-Primer_06-2010. http://www.ict-phydyas.org
    [4] Viholainen, A., Bellanger, M., and Huchard M. PHYDYAS project, deliverable D5.1: Prototype filter and structure optimization. http://www.ict-phydyas.org
    [5] P. P. Vaidyanathan, Multirate Systems And Filter Banks. 1993, Prentice-Hall.
    [6] Shin-Yo, Lin. 2011. Homogeneous Reconfigurable Memory-based FFT Processor for Wireless Communication Systems. Taoyuan: National Central Univeristy. Electrical engineering.
    [7] R. Radhouane, P, Liu, C. Modin, “Minimizing the memory requirement for continuous flow FFT implementation:Continuous flow mixed mode FFT(CFMM-FFT),” Proc. IEEE Int. Symp. Circuits Syst., vol. 1, pp.116-119, 2000-May
    [8] J. Nadal, C. A. Nour, A. Baghdadi, "Low-complexity pipelined architecture for FBMC/OQAM transmitter", IEEE Trans. Circuits Syst. II Express Briefs, vol. 63, no. 1, pp. 19-23, Jan. 2016.
    [9] C.-L. Hung, S.-S. Long, M.-T. Shiue, "A low power and variable-length FFT processor design for flexible MIMO OFDM systems", Proc. IEEE Int. Symp. Circuits Syst., pp. 705-708, 2009-May.
    [10] Yaun-En, Yu. 2016. “FBMC Transmission System Design and FPGA Evaluation of Polyphase Filter for 5G Mobile System”, Taoyuan: National Central Univeristy. Electrical engineering.
    [11] B. G. Jo, M. H. Sunwoo, "New continuous-flow mixed-radix (CFMR) FFT processor using novel in-place strategy", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 52, no. 5, pp. 911-919, May 2005.
    [12] J. A. Hidalgo, J. Lopez, F. Aruguello, E. L. Zapata, "Area-efficient architecture for fast Fourier transform", IEEE Trans. Circuits Syst. II. Analog Digit. Signal Process. vol. 46, no. 2, pp. 187-193, Feb. 1999.

    QR CODE
    :::