跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張旭順
Hsu-shun Chang
論文名稱: 內建鍺量子點於PIN奈米線穿隧場效光電晶體之研製
Development of germanium quantum dots embedded the naonwire PIN tunneling field-effect phototransistor channel
指導教授: 李佩雯
Pei-wen Li
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 58
中文關鍵詞: 光電晶體奈米線鍺量子點
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文呈現將鍺量子點崁於矽奈米線之PIN穿隧電晶體通道之中,實作論證因鍺量子點的強大量子侷限效應確實有利於可見光線的吸收。
      分別以BF2與As離子佈植製作P型源極與N型汲極之後,沉積非晶矽薄膜並搭配長時間退火以形成微小晶粒之複晶矽薄膜。接續以低壓化學氣相沉積方法陸續成長氮化矽與矽鍺薄膜,再佐以電子束微影與蝕刻製作定義出70 nm線寬之複晶矽鍺/氮化矽/複晶矽奈米線結構。經披覆氮化矽側壁保護層後,以熱氧化將矽鍺奈米線轉換成12 nm鍺量子點崁於氮化矽與複晶矽奈米線通道之間。在定義約300 nm之複晶矽閘極製程之後,即以傳統之後段金屬製程完成內建鍺量子點於PIN奈米線穿隧場效光電晶體之研製。
    PIN奈米線穿隧場效電晶體之Ion/Ioff電流比值可達近104。經可見光至近紅外光線400–550、700以及980 nm的波長照射調變下,鍺量子點PIN穿隧電晶體之Ion電流分別可放大10、5以及1–2倍,但暗電流不受照光之影響仍然維持10-16 A。由光譜響應之分析可知,可見光之光電流調變因是來自於12 nm鍺量子點經量子侷限效應作用後,電子能結構由原本之間接能隙轉換為分裂能階所致。
    本文所提出PIN奈米線穿隧場效光電晶體可展現清楚可見光調變與放大電流之能力,極具潛能將可見光偵測與電流放大之功能整合於一體,達成光電有效轉換之放大功效。


    This thesis demonstrates that germanium quantum dots into the dielectrics of PIN nanowire tunneling field-effect phototransistor add provide an effective way to absorb visible light, significantly enhancing the photocurrent under the illumination of 300–600 nm.
    Following the respective BF2 and As implantation for the formation of source and drain, an 45 nm amorphous Si layer was deposited followed by a 24 hour, 600℃ anneal. This long-duration anneal was able to form tiny grains of Poly-Si through solid phase crystallization. A bilayer of Si3N4 and SiGe was deposited followed by a combination of electron-beam lithography and plasma etching, leading to the generation of a 70 nm-wire SiGe/Si3N4/Si nanowire structure. Following a Si3N4 spacer coating, the nanowire structure was thermal oxidized to form 12 nm Ge quantum dots embed and with the core of the Si3N4 nanowire. The QD PIN TFTs were finally realized typical contact and metallization process.
    The QD PIN NW transistors exhibit a symmetrical, polarity Id-Vg transfer characteristics under position and negative gate voltage modulation. The Ion/Ioff ratio is up to 104. Notably, the Ion could be significantly enhanced by a factor of 10, 5 and 2 respectively, under the illumination of 400–550, 700 and 980 nm, but the dark current is independent of illumination influence remained 10-16 A. The photocurrent increase with an increase in the light power, showing a good linearity.
    The demonstrated PIN nanowire tunneling field effect phototransistor exhibit clear photocurrent enhancement in response to visible light modulation, offering great potential for visible light detection and current amplification.

    中文摘要----------------------------------------------------I 英文摘要--------------------------------------------------III 目錄-------------------------------------------------------V 圖目錄----------------------------------------------------VII 第一章 研究動機與簡介 1-1 研究動機-----------------------------------------------01 1-2 光電晶體 (phototransistors) 的歷史----------------------02 第二章 元件設計與操作原理 2-1 前言--------------------------------------------------06 2-2 鍺量子點的特性------------------------------------------06 2-3 鍺量子點光二極體-----------------------------------------07 2-4 元件結構設計--------------------------------------------08 2-5 穿隧理論-----------------------------------------------08 2-6 元件導通時對應的能帶-------------------------------------10 I. P型源極區/ I型區-----------------------------------------11 II. I型區/N型汲極區-----------------------------------------11 第三章 鍺量子點崁於矽奈米線之PIN穿隧電晶體之製程 3-1 前言--------------------------------------------------17 I. 隔離絕緣薄膜沉積------------------------------------------17 II. 定義元件主動區 (active area, AA)------------------------18 III. 元件通道薄膜沉積----------------------------------------18 IV. 主動區奈米線定義-----------------------------------------19 V. 熱氧化形成鍺量子點----------------------------------------19 VI. 製作閘電極---------------------------------------------19 VII. 後段製程----------------------------------------------20 第四章 元件特性分析與探討 4-1 前言--------------------------------------------------29 4-2 電氣特性分析--------------------------------------------29 4-3 光學調制之電氣特性---------------------------------------30 第五章 總結與未來展望----------------------------------------40 參考文獻---------------------------------------------------41

    [1] J. E. Roth et al., “Optical modulator on Si employing Ge quantum wells,” Frontiers in Optics., 2007.
    [2] D. Ahn et al., “High performance, waveguide integrated Ge photodetectors,” Opt. Exp., 15, 3916, 2007.
    [3] S. J. Koester et al., “Germanium on SOI infrared detectors for integrated photonic applications,” IEEE J. Sel. Topics Quantum Electron., 12, 1489, 2006.
    [4] H. Kroemer, “Quasi-electric and quasi-magnetic fields in nonuniform semiconductors,” RCA Rev., 18, 332, 1957.
    [5] H. Kroemer, “Theory of wide-gap emitter for transistors,” Proc. IRE, 45, 1535, 1957.
    [6] C. W. Chen, and T. K. Gustafson, “Characteristics of an avalanche phototransistor fabricated on a Si surface,” Appl. Phys. Lett., 39, 161, 1981.
    [7] J. C. Campbell et al., “Avalanche InP/InGaAs heterojunction phototransistor,” IEEE J. Quantum Electron., 19, 1134, 1983.
    [8] C. C. Wang et al., “CMOS-compatible generation of self-organized 3D Ge quantum dot array for photonic and thermoelectric applications,” IEEE Trans. Nanotechnology, 11, 657-660, 2012.

    [9] W. T. Lai and P. W. Li, “ Growth kinetics and related physical/electrical properties of Ge quantum dots formed by thermal oxidation of Si1−xGex-on-insulator,” Nanotechnology, 18, 145402, 2007.
    [10] P. W. Li et al., “Optical and Electronic Characteristics of Germanium Quantum Dots Formed by Selective Oxidation of SiGe/Si-on-Insulator,” Jpn. J. Appl. Phys., 43, 7788, 2004.
    [11] 張宇瑞,“鍺量子點在氮化矽中的形成機制與鍺量子點可見光光二極體的研製”,碩士論文,國立中央大學,民國100年。
    [12] J. Knoch, et al., “A novel concept for field-effect transistors - thetunneling carbon nanotube FET”, IEEE Device Research Conference Digest, 154, 2005.
    [13] A. S. Verhulst, et al., “Modeling the single-gate, double-gate, andgate-all-around tunnel field-effect transistor”, Journal of Applied Physics, 107, 2-3, 2010.
    [14] S. M. Sze, Physics of Semiconductor Devices, 3rd Ed, New York, 91, 2007.

    QR CODE
    :::