| 研究生: |
黃俞碩 Yu-Shuo Huang |
|---|---|
| 論文名稱: |
合成質子傳導型電解質與奈米纖維陽極 功能層於H+-SOFC之應用研究 Synthesis and Characterization of Proton-conducting Electrolytes and Nano-fiber Anode Functional Layer for H+-SOFC Applications |
| 指導教授: |
李勝偉
Sheng-Wei Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 溶膠-凝膠法 、固態氧化物燃料電池 、電解質 、奈米纖維 、陽極功能層 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
態氧化物燃料電池電解質材料之化學穩定性、燒結緻密性、相均勻性以及離子傳導性,本實驗利用溶膠-凝膠製備以BaCe0.8Y0.2O3-δ為基礎之電解質材料,此氧化物在中溫(600-800℃)範圍內具有穩定之質子傳導性,但由於此材料之高溫化學穩定性及燒結緻密性不佳,因此必須添加Sr及Zr來抑制生成不純相,為了增進燒結緻密性,故本研究利用成分交換法均勻混合Ba1Ce0.8Y0.2O3-δ及Ba0.6Sr0.4Ce0.4Zr0.4Y0.2O3-δ,於1600℃下燒結4小時,使成分均勻擴散形成單相Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δ,並觀察其顯微結構以及利用拉曼圖譜分析此材料於高溫CO2環境下之化學穩定性,並作成單電池Pt /電解質/ Pt測量電解質之電導率及電池能量密度。之後以陽極支撐的方式製作電池,將電解質減薄至50 μm以下,縮短質子傳遞路徑,另外加入陽極功能層(functional layer) SrCe0.8Y0.2O3-δ奈米纖維結構來達到增加陽極與電解質間之表面積,以利燃料催化得更完全,進而提升電池電化學表現及能量密度。
This study reports the synthesis of proton-conducting Ba1-xSrxCe0.8-xZrxY0.2O3-δ (x =0, 0.2, 0.4) ceramics by using a combination of citrate-EDTA complexing sol-gel process and the composition-exchange method. Compared to the sintered oxides of similar composition prepared from conventional sol-gel powders,Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δoxides synthesized by sol-gel combined with the composition-exchange method are found to exhibit improved sinterability, higher conductivity, more homogeneous phase. Among all sintered oxides in this study, the Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δpellet fabricated by this new method has the highest conductivity, 0.017 S/cm at 800℃, which is higher than those pressed from conventional sol-gel powders. Based on the experimental results, we discuss the mechanism for improvement in these properties in terms of calcined particle characteristics. This work demonstrates thatBa0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δoxides synthesized by sol-gel combined with the composition-exchange method would be a promising electrolyte for H+-SOFC applications.
A SrCe0.8Y0.2O3-δ-NiO anode functional layer was added between the Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δelectrolyte and the Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δ-NiO anode substrate to investigate its effect on the performance of single cells. Anode-supported electrolyte fuel cells were fabricated and tested. The single cell without SrCe0.8Y0.2O3-δ-NiO anode functional layer generated maximum power densities of 201.08 mWcm−2 at 800 °C. Electrochemical impedance spectroscopy (EIS) measurements for three cells revealed that the addition of the anode functional layer reduced the contact resistance as well as the polarization resistance for the cell, resulting thus in the improved cell performance.
[1.1]W.R. Grove, “Onvoltaicseriesandthecombinationofgases byplatinum”, PhilosophicalMagazineSeries 3, 14 (1839) pp. 127-130.
[1.2] M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, E. D. Bartolomeo, “Influence of the ratio between Ni and BaCe0.9Y0.1O3−δon microstructural andelectrical properties of proton conducting Ni–BaCe0.9Y0.1O3−δanodes”, Journal of Alloys and Compounds, 509 (2011) pp. 1157–1162.
[1.3]B. H. Rainwater, M.F. Liu, M.L. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, Journal of Hydrogen Energy, 37 (2012) pp. 18342-18348.
[1.4] T. Suzuki, S. Sugihara, T. Yamaguchi, H. Sumi, K. Hamamoto, Y. Fujishiro, “Effect of anode functional layer on energy efficiency of solid oxide fuel cells”, Electrochemistry Communications, 13(2011) pp. 959-962.
[1.5] L. Bi, S.Q. Zhang, S.M. Fang, Z.T. Tao, R.R. Peng, W. Liu, “A novel anode supported BaCe0.7Ta0.1Y0.2O3−δelectrolyte membrane for proton-conducting solid oxide fuel cell”, Electrochemistry Communications, 10 (2008) pp. 1598-1601.
[1.6] H. Moon, S. D. Kim, E. W. Park, S. H. Hyun, H. S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, International Journal of Hydrogen Energy, 33 (2008) pp. 2826-2833.
[1.7] Z.H. Chen, R. Rana, W. Zhou, Z.P. Shao, S.M. Liu, ” Assessment of Ba0.5Sr0.5Co1−yFeyO3−δ (y = 0.0–1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane”, Electrochimica Acta, 52 (2007) pp. 7343-7351.
[1.8] C.A.J. Fisher, M. Yoshiya, Y. Iwamoto, J. Ishii, M. Asanuma, K. Yabuta, “Oxide ion diffusion in perovskite-structured Ba1−xSrxCo1−yFeyO2.5:A molecular dynamics study”, Solid State Ionics, 177 (2007) pp. 3425–3431.
[1.9] W. Zhou, R. Ran, Z.P. Shao, R. Cai, W.Q. Jin, N.P. Xu, J.M. Ahn, ” Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathodes prepared via electroless deposition”, Electrochimica Acta, 53 (2008) pp. 4370-4380.
[1.10] B. Wei, Z. Lü, X.Q. Huang, J.P. Miao, X.Q. Sha, X.S. Xin, W.H. Su, “Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1−xCo0.8Fe0.2O3−δ (0.3 ≤ x ≤ 0.7)”, Journal of the European Ceramic Society, 26 (2006) 2827-2832.
[1.11] Y. Lin, R. Ran, Y. Zheng, Z.P. Shao, W.Q. Jin, N.P. Xu, J.M. Ahn, “Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell”, Journal of Power Sources, 180 (2008) pp. 15–22.
[1.12] W. Zhou, R. Ran, R. Cai, Z.P. Shao, W.Q. Jin, N.P. Xu, “Effect of a reducing agent for silver on the electrochemical activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3−δ electrode prepared by electroless deposition technique”, Journal of Power Sources, 186 (2009) pp. 244–251.
[1.13] Z.J. Yang, W.B. Wang, J. Xiao, H.M. Zhang, F. Zhang, G.L. Ma, Z.F. Zhou, “A novel cobalt-free Ba0.5Sr0.5Fe0.9Mo0.1O3−δ–BaZr0.1Ce0.7Y0.2O3−αcomposite cathode for solid oxide fuel cells”, Journal of Power Sources, 204 (2012) pp. 89–93.
[1.14] B. Lin, H.P. Ding, Y.C. Dong, S.L. Wang, X.Z. Zhang, D.R. Fang, G.Y. Meng, “Intermediate-to-low temperature protonic ceramic membrane fuel cells withBa0.5Sr0.5Co0.8Fe0.2O3-δ–BaZr0.1Ce0.7Y0.2O3-δ composite cathode”, Journal of Power Sources, 186 (2009) pp. 58–61.
[1.15] L. Zhao, B.B. He, Y.H. Ling, Z.Q. Xun, R.R. Peng, G.Y. Meng, X.Q. Liu, ” Cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3−δfor proton-conducting solid oxide fuel cell cathode”, International Journal of Hydrogen Energy, 35 (2010) pp. 3769–3774.
[1.16] W.J. Zheng, C. Liu, Y. Yue, W.Q. Pang, “Hydrothermal synthesis and characterization of BaZr1-xMxO3-α (M = Al, Ga, In, x≦0.20) series oxides ”, Materials Letters, 30 (1997) pp. 93-97.
[1.17]K. Katahira , Y. Kohchi, T. Shimura, H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, 138 (2000) pp. 91–98.
[1.18]K.H. Ryu, S.M. Haile, ” Chemical stability and proton conductivity of doped BaCeO3 -BaZrO3 solid solutions”, Solid State Ionics, 125 (1999) pp. 355–367.
[1.19] Rinlee Butch Cervera , Y. Oyama, S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3 − δ by sol–gel method”, Solid State Ionics,178 (2007) pp. 569–574.
[1.20] Y.M. Guo, Y. Lin, R. Ran, Z.P. Shao, ” Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3−δ (0.0 ≤ y ≤ 0.8) for fuel cell applications”, Journal of Power Sources, 193 (2009) pp. 400–407.
[1.21] H. Inaba, H. Tagawa, ” Ceria-based solid electrolytes”, Solid State Ionics, 83 (1996) pp. 1- 16.
[1.22] M. Johnsson, P. Lemmens, “Crystallography and Chemistry of Per-ovskites,” Handbook of Magnetism and Advanced Magnetic Media,pp. 2098–106.
[1.23] X.C. Liu, R.Z. Hong, C.S. Tian, “Tolerance factor and the stability discussion of ABO3-type ilmenite”, J Mater Sci : Mater Electron, 20 (2009) pp. 323–327.
[1.24] E. Traversa, E.Fabbri, formerly National Institute for Material Science, Japan.
[1.25] N. Agmon, “The Grotthuss mechanism”, Chemical Physics Letters, 244 (1995) pp. 456-462.
[1.26] M. Saiful Islam, “Ionic transport in ABO3 perovskite oxides: a computermodelling tour”, J. Mater. Chem., 10 (2000) pp. 1027-1038.
[1.27] K.D. Kreuer, ” Proton Conductivity: Materials and Applications”, Chem. Mater. 8 (1996) pp. 610-641.
[2.1] D. Li, Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?”, Advances materials, 16 (2004) pp.1151-1170.
[3.1] E. Perry Murray, T. Tsai, S. A. Barnett, “A direct-methane fuel cell with a ceria-based anode“, Nature, 400 (1999) pp. 649-651.
[3.2] S.H. Chan, H.K. Ho, Y. Tian, ”Multi-level modeling of SOFC–gas turbine hybrid system”, International Journal of Hydrogen Energy, 28 (2003) pp. 889 – 900.
[3.3] S. M. Haile, “Fuel cell materials and components”, Acta Materialia, 51 (2003) pp. 5981–6000.
[3.4] K. Xie, R.Q. Yan, X.Q. Liu, “Stable BaCe0.7Ti0.1Y0.2O3−δproton conductor for solid oxide fuel cells”, Journal of Alloys and Compounds, 479 (2009) pp. L40–L42.
[3.5] I.M. Hung, H.W. Peng, S.L. Zheng, C.P. Lin, J.S. Wu, “Phase stability and conductivity of Ba1−ySryCe1−xYxO3−δsolid oxide fuel cell electrolyte”, Journal of Power Sources, 193 (2009) pp. 155–159.
[3.6]Z.P. Shao, S. M. Haile, ” A high-performance cathode for the next generation of solid-oxide fuel cells”, Nature, 431 (2004) pp. 170-173.
[3.7]L. Yang, C.D. Zuo, S.H. Wang, Z. Cheng, and M. Liu, ” A Novel Composite Cathode for Low-Temperature SOFCs Based on Oxide Proton Conductors”, advanced material, 20 (2008) pp. 3280–3283.
[3.8] W.Y. Tan, Q. Zhong, M.S. Miao, H.X. Qu, ” H2S Solid oxide fuel cell based on a modified Barium cerate perovskite proton conductor”, Ionics , 15 (2009) pp. 385–388.
[3.9]Y. Lin, R. Ran, Y. Zheng, Z.P. Shao, W.Q. Jin, N.P. Xu, J.M. Ahn,” Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δas a Potential Cathode for an Anode-supported Proton-conducting Solid-oxide Fuel Cell”, Journal of Power Sources, 180 (2008) pp. 15–22.
[3.10]H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, ”Proton Conduction in Sintered Oxides Based on BaCe03“, Journal of Electrochemical Society, 135 (1988) pp. 529–533.
[3.11] H. Iwahara, ”Technological Challenges in the Application of Proton Conducting Ceramics”, Solid State Ionics, 77 ( 1995) pp. 289–298.
[3.12]H.G. Gu, R. Ran, W. Zhou, Z.P. Shao, ”Anode-supported ScSZ-electrolyte SOFC with whole cell materials from combined EDTA–citrate complexing synthesis process”, Journal of Power Sources, 172 (2007) pp. 704–712.
[3.13] Y.M. Guo, Y. Lin, R. Ran, Z.P. Shao, ” Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ(0.0 ≤ y ≤ 0.8) for fuel cell applications”, Journal of Power Sources, 193 (2009) pp. 400–407.
[3.14] R.S. Gemmen, J. Trembly, “On the mechanisms and behavior of coal syngas transport and reaction within the anode of a solid oxide fuel cell”, Journal of Power Sources, 161 (2006) pp. 1084–1095.
[3.15] Z. Zhong, ”Stability and conductivity study of the BaCe0.9−xZrxY0.1O2.95 systems”, Solid State Ionics, 178 (2007) pp. 213–220.
[3.16] M.Y. Gong, X. Liu, J. Trembly, C. Johnson, “Sulfur-tolerant anode materials for solid oxide fuel cell application”, Journal of Power Sources, 168 (2007) pp. 289–298.
[3.17] P. Babilo, T. Uda, S.M. Haile, “Processing of Yttrium-doped Barium Zirconate for High Proton Conductivity”, Materials Research Society, 22 (2007) pp. 1322-1330.
[3.18] J.D. Lu, L. Wang, L.H. Fan, Y.H. Li, L. Dai, H.X. Guo, ” Chemical stability of doped BaCeO3-BaZrO3 solid solutions in different atmospheres”, Journal Of Rare Earths, 26 (2008) pp. 505–510.
[3.19] Y.Z. Zeng, P.L. Mao, S.P. Jiang, P. Wu, L. Zhang, P. Wu, ” Prediction of Oxygen Ion Conduction from Relative Coulomb Electronic Interactions in Oxyapatites”, Journal of Power Sources, 196 (2011) pp. 4524–4532.
[3.20] C.S. Tu, R.R. Chien, V.H. Schmidt, S.C. Lee, C.C. Huang, C.L. Tsai, “Thermal Stability of Ba(Zr0.8−xCexY0.2)O2.9 Ceramics in Carbon Dioxide“, Journal of Applied Physics, 105 (2009) p. 103504.
[3.21] R.R. Chien, C.S. Tu, V.H. Schmidt, S.C. Lee, C.C. Huang, ” Synthesis and characterization of proton-conducting Ba(Zr0.8−xCexY0.2)O2.9 ceramics”, Solid State Ionics, 181 (2010) pp. 1251–1257.
[3.22] R. Q. Long, Y. P. Huang and H. L. Wan, ” Surface Oxygen Species Over Cerium Oxide and Their Reactivities with Methane and Ethane by Means of in situ Confocal Microprobe Raman Spectroscopy”, Journal Of Raman Spectroscopy, 28 (1997) pp. 29–32.
[3.23] M. Aghazadeh, A. Nozad, H. Adelkhani, M. Ghaemi, ” Synthesis of Y2O3 Nanospheres via Heat-Treatment of Cathodically Grown Y(OH)3 in Chloride Medium”, Journal of The Electrochemical Society, 157(2010) pp. D519–D522.
[3.24] H. Iwahara, “Technological challenges in the application of proton conducting ceramics”, Solid State Ionics,77 (1995) pp. 289-298.
[3.25]H. Iwahara, “Proton conduction in sintered oxides based on BaCeO3”, J. Electrochem. Soc., 135 (2) (1988) pp. 529–533.
[3.26]H. Iwahara, “High temperature solid electrolyte fuel cells using perovskite type oxide based on BaCeO3”, J. Electrochem. Soc., 137 (2) (1990) pp. 462–465.
[4.1]E. Zhao, Z. Jia, L. Zhao, Y.P. Xiong, C.W. Sun, M. E. Brito,’’One dimensional La0.8Sr0.2Co0.2Fe0.8O3-δ/Ce0.8Gd0.2O1.9 nanocomposite cathodes for intermediate temperature solid oxide fuel cells”, Journal of Power Sources, 219 (2012) pp. 133–139.
[4.2] L.Q. Fan, Y.P. Xiong, L.b. Liu, Y.W. Wang, H. Kishimoto, K. Yamaji, T. Horita, ” Performance of Gd0.2Ce0.8O1.9 infiltrated La0.2Sr0.8TiO3 nanofiber scaffolds as anodes for solid oxide fuel cells”, Journal of Power Sources, 265 (2014) pp. 125–131.
[4.3] J.G. Lee, M.G. Park, J.H. Park, Y.G. Shul, “Electrochemical characteristicsofelectrospunLa0.6Sr0.4Co0.2Fe0.8O3-δ-Gd0.1Ce0.9O1.95 cathode”, Ceramics International, 40 (2014) pp. 8053–8060.
[4.4] E.Q. Zhao, C. Ma, W. Yang, Y.P. Xiong, J.Q. Li, C.W. Sun, “Electrospinning La0.8Sr0.2Co0.2Fe0.8O3-δ tubes impregnated with Ce0.8Gd0.2O1.9 nanoparticles for an intermediate temperature solid oxide fuel cell cathode”, International Journal of hydrogen energy, 38 (2013) pp. 6821–6829.
[4.5] N.T. Hieua, J. Park, B. Tae, “Synthesis and characterization of nanofiber-structured Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite oxide used as a cathode material for low-temperature solid oxide fuel cells”, Materials Science and Engineering B, 177 (2012) pp. 205– 209.
[4.6]L. Bi, E. Fabbri, E. Traversa, “ Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs)”, Electrochemistry Communications, 16 (2012) pp. 37–40.
[4.7] S.C. He, H.L. Dai, G.F. Cai, H. Chen, L.C. Guo, ” Optimization of La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Sm0.2O1.9 compositionally graded anode functional layer”, Electrochimica Acta, 152 (2015) pp. 155–160.