跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭淳元
Chun-Yuan Cheng
論文名稱: 調變氧化銦錫薄膜功函數提升有機發光元件電子傳輸層之電流注入效率之研究
Research of adjustable work function of indium tin oxide film to improve the carrier injection efficiency of organic devices
指導教授: 李正中
Cheng-Chung Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 照明與顯示科技研究所
Graduate Institute of Lighting and Display Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 52
中文關鍵詞: 功函數紫外光電子能譜儀氧化銦錫
外文關鍵詞: Work Function, UPS, ITO
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出以一種調變氧化銦錫(Indium tin oxide, ITO)導電膜功函數的方法,除了可調控薄膜之功函數外,並同時兼顧其導電性與光學特性。使用利用脈衝直流磁控濺鍍法(Pulsed DC Magnetron sputtering)製成,藉由調變氧氣的流量去改變其薄膜之功函數。
    首先探討單層導電膜之光學與導電特性在不同參數下變化探討。當氧的變化量由0.5 sccm增加至12 sccm時,功函數調變量從原先的4.4 eV提升至 4.9 eV。在單層膜的實驗結果中,可得知功函數會隨著氧的量增加而提高,片電阻逐漸上升。在製鍍過程中調變氧流量以及針對各種不同厚度堆疊之組合,來調整功函數及導電性,其結果為30 nm 功函數為最大4.8 eV,且片電阻值更可維持在26.37 Ω/□。而使用有機材料做疊層後做I-V curve觀察也發現在電流增益以及開路電壓部分有著顯著的改善效果。


    This study proposes a new method to adjust work function of indium tin oxide film. It not only raised work function, but also has good electrical and optical properties. Used pulsed DC magnetron sputter to manufacture ITO film and work function of ITO film can be adjusted by different oxygen flow.
    In monolayer part, electrical property and optical property are first issue to discuss, by adjust experiment parameter to observe the variation. Work function rising from 4.4 eV to 4.9eV when oxygen flow rising from 0.5 sccm to 12 sccm, therefore, work function and sheet resistance are rising with higher oxygen flow. In the manufacturing process, adjust oxygen flow and stacked. 30 nm stacked is the best parameter in this study, work function is 4.8 eV and sheet resistance is 26.37 Ω/□. Final, make the organic device. I-V curve shows the current density and open voltage are both enhance, therefore, this method is improve the efficiency of carrier injection.

    摘要 i Abstract ii 致謝 iii 目錄 v 圖目錄 vii 表目錄 viii 第一章 緒論 1 1-1 前言 1 1-2 研究動機 4 第二章 基本理論 6 2-1 透明導電膜 6 2-1-1 導電特性 6 2-1-2 光學特性 11 2-2 ITO透明導電膜材料介紹 15 2-3 功函數 17 2-3-1 功函數原理 17 2-3-2 影響透明導電膜功函數之原理與機制 19 第三章 實驗步驟與設備 24 3-1 實驗步驟 24 3-2 鍍膜設備 25 3-3 量測儀器 26 3-3-1 四點探針 26 3-3-2 光譜儀 28 3-3-3 紫外光電子能譜儀 28 第四章 實驗結果與討論 30 4-1 氧氣流量對ITO薄膜之影響 31 4-2 調變功函數ITO薄膜之特性分析 34 4-3 調變功函數之ITO薄膜於有機元件上之應用測試 36 第五章 結論 39 參考文獻 40

    [1] F. Streintz, Annals of Physics (Leipzig) vol. 9, 854, (1902).
    [2] K. Baedeker, “Electrical conductivity and thermoelectric power of
    some heavy metal compounds”, Ann. Phys. (Leipzig) 22, 749
    (1907).
    [3] J. T. Littleton, U. S. Patent, 2,118,795 (1938).
    [4] G. Rupprecht, “Untersuchungen der elektrischen und lichtelektrischen Leitfahigkeit dunner Indiumoxyd-schichten”, Z. Phys. 139, 504 (1954).
    [5] 楊明輝,”透明導電膜”,藝軒圖書出版社,台灣,第53頁 (2006)。
    [6] Yasuhiko Shirota, Yoshiyuki Kuwabara, Hiroshi Inada, Takeo Wakimoto, Hitoshi Nakada, “Multilayered organic electroluminescent device using a novel starburst molecule, 4,4’,4’’tris (3methylphenylphenylamino) triphenylamine, as a hole transport material”, Appl. Phys. Lett. 65, 807 (1994).
    [7] James Norman Bardsley, International OLED Technology Roadmap, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 10 (2004).
    [8] A. Klein, C. Körber, A. Wachau, F. Säuberlich, Y. Gassenbauer, R. Schafranek, S.P. Harvey, T.O. Mason, “Surface potentials of magnetron sputtered transparent conducting oxides”, Thin Solid Films 518 (2009).
    [9] L. Chkoda , C. Heske, M. Sokolowski, E. Umbach, F. Steuber, J. Staudigel, M. Stoßel, J. Simmerer, “Work function of ITO substrates and band-offsets at the TPD/ ITO interface determined by photoelectron spectroscopy”, Synthetic Metals 111-112 (2000).
    [10] Ying Xie, Haitao Yu, Hongxing Zhang, Honggang Fu, “Tuning the band gaps and work functions via topology and carbon concentration: a first-principles investigation of Cx (BN)y compounds”, Phys. Chem. Chem. Phys., 14, 4391 (2012).
    [11] R.L. Weither, “Electrical Properties of Single Crystals of Indium Oxide”, Journal of Applied Physics, 33, 2834 (1962).
    [12] C.G. Fonstad and R.H. Rediker, “Electrical Properties of High Quality Stannic Oxide Crystals”, Journal of Applied Physics, 42, 2911 (1971).
    [13] P.S. Kireev, Semiconductor Physics, Mir, Moscow (1978).
    [14] K.F. Huang, T.M. Uen, Y.S. Gou, C.R. Huang and H.C.Yang, “Temperature dependence of transport properties of evaporated indium tin oxide films”, Thin Solid Films, 148, 7 (1978).
    [15] D.H. Zhang, H.L. Ma, “Scattering mechanisms of change carriers in transparent conducting oxide films”, Applied Physics A, 62, 487 (1966).
    [16] E. Conwell and V.F. Weisskopf, “Theory of Impurity Scattering in Semiconductors”, Physics Review, 77, 388 (1950).
    [17] Morris, J. E., Ridge, M. I., Bishop, C. A. & Howson, R. P. Temperature dependence of Hall mobility in indium–tin oxide thin films. Journal of Applied Physics, 51, 1847 (2008).
    [18] Erginsoy, C. Neutral Impurity Scattering in Semiconductors. Phys. Rev., 79, 1013 (1950).
    [19] J. R. Bellingham, W. A. Phillips, C. J. Adkins, ”Intrinsic performance limits in transparent conducting oxides”, Journal of Materials Science Letter 11 263 (1992).
    [20] Paul Drude, “Zur Elektronentheorie der Metalle”, Annalen der Physik, 306, 566 (1900).
    [21] Marezio, M. Refinement of the crystal structure of In2O3 at two wavelengths. Acta Crystallographica, 20, 723 (1966).
    [22] E. Terzini, P. Thilakan, C. Minarini, “Properties of ITO Thin Films Deposited by RF Magnetron Sputtering at Elevated Substrate Temperature’’, Materials Science and Engineering B., 77, 110 (2000).
    [23] P. K. Song, H. Akao, M. Kamei, Y. Shigesato, I. Yasui, ”Preparation
    and Crystallizastion of Tin-doped and Undoped Amorphous Indium Oxide Films Deposited by Sputtering”, Japanese Journal Applied Physics, 38, 5224 (1999).
    [24] A. Klein, "Surface potentials of magnetron sputtered transparent conducting oxides", Thin Solid Films 518 1197 (2009).
    [25] P. Erhart, A. Klein, K. Albe, "First-principles study of the structure and stability of oxygen defects in zinc oxide" Phys. Rev. B, 72, 085213 (2005).
    [26] P. Erhart, A. Klein, K. Albe, " First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects" Phys. Rev. B, 73, 205203 (2006).
    [27] S.B. Zhang, S.H. Wei, A.Zunger, "Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO" Phys. Rev.B, 63, 075205 (2001).
    [28] JS Kim, B Lägel, E Moons, N Johansson, ID Baikie , "Kelvin probe and ultraviolet photoemission measurements of indium tin oxide work function: a comparison", Synthetic Metals, 111, 311 (2000).
    [29] H Moormann, D Kohl, G Heiland, "VARIATIONS OF WORK FUNCTION AND SURFACE CONDUCTIVITY ON CLEAN CLEAVED ZINC OXIDE SURFACES BY ANNEALING AND BY HYDROGEN ADSORPTION", Surface Science, 100, 302 (1980).
    [30] Paul C. Rusu and Geert Brocks, "Surface Dipoles and Work Functions of Alkylthiolates and Fluorinated Alkylthiolates on Au(111) " J. Phys. Chem. B, 110, 22628 (2006).
    [31] Honggang Fu., "Tuning the band gaps and work functions via topology and carbon concentration: a first-principles investigation of Cx(BN)y compoundsw", Phys. Chem. Chem. Phys.,14, 4391 (2012).
    [32] Chengfeng Qiu, Zhilang Xie, Haiying Chen, Man Wong, and Hoi Sing Kwok, “Comparative study of metal or oxide capped indium–tin oxide anodes for organic light-emitting diodes”, Journal of Applied Physics, 93, 3253 (2003).
    [33] Mohamed Ben Khalifa, David Vaufrey, Abdelaziz Bouazizi, Jacques Tardy, Hassen Maaref, “Hole injection and transport in ITO/PEDOT/PVK/Al diodes”, Materials Science and Engineering C, 21, 277 (2002).
    [34] Vishal Shrotriya, Gang Li, Yan Yao, Chih-Wei Chu, and Yang Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells”, APPLIED PHYSICS LETTERS, 88, 073508 (2006).

    QR CODE
    :::