跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林靖宇
Ching-Yu Lin
論文名稱: Defective Wafer Detection Using Sensed Numerical Features
指導教授: 孫敏德
Ming-Te Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系在職專班
Executive Master of Computer Science & Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 44
中文關鍵詞: GRU神經網絡XGBoost深度學習缺陷晶圓檢測
外文關鍵詞: GRU neural networks, XGBoost, Deep learning, Defective wafer detection
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體製造的基本過程之一是切片,這意味著將晶棒切成許多晶片。
    在切片過程中,可能會產生有缺陷的晶圓。
    不幸的是,識別缺陷晶片的檢查既浪費時間又檢查困難。為了解決這個問
    題,我們建立了一個系統,該系統在切片及表面檢查過程中會使用傳感器
    收集晶圓特性(例如溫度,厚度,晶片表面上的圖案等)以檢測晶片在製
    造過程中是否有缺陷。
    我們在此系統中應用兩種不同模型-GRU 神經網絡和XGBoost。此兩種模型
    經過微調後,根據實際數據分析的實驗結果顯示在晶圓的缺陷檢測方面,
    GRU 神經網絡的預測準確度和模型訓練時間均優於XGBoost


    One of the fundamental processes in semiconductor manufacturing is slicing,
    which means cutting an ingot into many wafers. During the slicing process, it
    is possible to produce defective wafers. Unfortunately, the inspection to identify
    defective wafers is time-consuming and dicult. To solve this problem, we build a
    system, which uses sensors to collect features (e.g., temperature, thickness, pattern
    on wafer surface, etc.) during the slicing process to detect if the wafers are defective
    in the manufacturing process. Two di erent models, the GRU neural network and
    XGBoost, are implemented in the proposed system. After ne-tuning both models,
    experimental results based on real dataset indicate that the GRU neural network
    outperforms XGBoost for wafer defective detection in both the prediction accuracy
    and model training time.
    ii

    Contents 1 Introduction 1 2 RelatedWork 3 2.1 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 Image-based prediction . . . . . . . . . . . . . . . . . . 4 2.2.2 Value-based prediction . . . . . . . . . . . . . . . . . . 5 3 Preliminary 7 3.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . 7 3.1.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . 9 3.1.3 Deep Neural Networks . . . . . . . . . . . . . . . . . . 9 3.1.4 Recurrent Neural Networks . . . . . . . . . . . . . . . 9 3.1.5 Long Short-Term Memory Cell . . . . . . . . . . . . . 10 3.1.6 Gated Recurrent Unit Cell . . . . . . . . . . . . . . . . 13 3.2 Over tting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 Data Regularization . . . . . . . . . . . . . . . . . . . 14 3.2.2 Early stopping . . . . . . . . . . . . . . . . . . . . . . 15 3.2.3 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Design 17 4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 Internal Calculation . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 Defective Wafer Detection . . . . . . . . . . . . . . . . . . . . 20 4.3.1 Feature scaling . . . . . . . . . . . . . . . . . . . . . . 21 4.3.2 RNN model . . . . . . . . . . . . . . . . . . . . . . . . 22 5 Performance 24 5.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 25 5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 26 6 Conclusion and Future Work 31

    [1] Y. T. H. Yoda, Y. Ohuchi, M. Ejiri, An automatic wafer inspection system using
    pipelined image processing techniques, 1988, pp. vol. 10,no. 1, pp. 4{16,.
    [2] G. P. C. R. Fairley, T.-Y. Fu, B. m. B. Tsai, High throughput brightfield/darkfield
    wafer inspection system using advanced optical techniques, 2007, pp. 164,475.
    [3] R. M. M. C. Sun, S. Jansen, O. D. Patterson, Semiconductor integrated test struc-
    tures for electron beam inspection of semiconductor wafers, 2010, pp. 679,083.
    [4] F. W. Mohamed Baker Alawieh, X. Li, Identifying systematic spatial failure patterns
    through wafer clustering, 2016.
    [5] A. Holzinger, Biomedical informatics: Discovering knowledge in big data, 2014.
    [6] A. Joshi, Proceedings of the 9th international joint conference on artificial intelligence
    - volume 1, 1985.
    [7] J. Y. Hwang, W. Kuo, Model-based clustering for integrated circuit yield enhance-
    ment, in: Eur. J. Oper. Res., 2007, pp. 143{153.
    [8] D. V. K. Takeshi Nakazawa, Wafer map defect pattern classification and image re-
    trieval using convolutional neural network, Vol. 31, 2018, pp. 309{314.
    [9] S. S. Mohamed El Mohadab, Belaid Bouikhalene, Predicting rank for scientific re-
    search papers using supervised learning, 2018.
    [10] C.-T. S. . T. Y. . C.-M. Ke, A neural-network approach for semiconductor wafer
    post-sawing inspection, 2002, pp. 260 { 266.
    [11] A. K. I. S. N. Srivastava, G. Hinton, R.Salakhutdinov, Dropout: A simple way to
    prevent neural networks from overfitting, Vol. 15, 2014.
    [12] G. H. D. Rumelhart, R. Williams, Learning representations by back-propagating
    error, 1986.
    [13] D. Soutner, L. Muller, Application of lstm neural networks in language modelling,
    2013, pp. 105{112.
    [14] O. K. A. P. J. Kazybek Adam, Kamilya Smagulova, Wafer quality inspection using
    memristive lstm, ann, dnn and htm, 2018.
    [15] A. Geron, Hands-On Machine Learning with Scikit-Learn TensorFlow, 2017.
    [16] M. Z. Wang Guilan, Zhao Hongshan, Application of xgboost algorithm in fault pre-
    diction of main bearing of fans, 2019, p. vol. 39.
    [17] L. W. Zhao Tianao, Zheng Shanhong, Research on credit risk analysis based on
    xgboost, 2018, pp. vol. 21,pp.33{35.
    [18] M. Z. S. He, G. A. Wang, D. F. Cook, Multivariate process monitoring and fault
    identification using multiple decision tree classifiers, 2013, pp. vol. 51, no. 11, pp.
    3355{3371.
    [19] Z. W. F. L. B. Xu, X. Liu, J. Liang, Fusion decision model for vehicle lane change
    with gradient boosting decision tree, 2019, pp. vol. 53, no. 6, pp. 1{11.
    [20] S.-S. K. J. Park, I.-H. Kwon, J.-G. Baek, Spline regression based feature extraction
    for semiconductor process fault detection using support vector machine, 2011, pp.
    vol. 38, no. 5, pp. 5711{5718.
    [21] M.Avriel, Nonlinear programming: Analysis and methods, Dover Publications, 2003.
    [22] Y. K. Hoyeop Lee, C. O. Kim, A deep learning model for robust wafer fault moni-
    toring with sensor measurement noise, 2017.
    [23] J. J. A. Karpathy, L. Fei-Fei, Visualizing and understanding recurrent network, 2015.
    [24] E. Lewis, Control of body segment differentiation in drosophila by the bithorax gene
    complex, 1982, pp. pages 239{253.

    QR CODE
    :::