| 研究生: |
黃志偉 Chih-Wei Huang |
|---|---|
| 論文名稱: |
不同製備方式氧化矽薄膜應用於矽晶太陽能電池之鈍化接觸層研究 Use Different Methods to Grow Silicon Oxide Thin Film for Passivated Contact on Silicon Solar Cell |
| 指導教授: |
張正陽
Jenq-Yang Chang 李建階 Jian-Jie Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 鈍化接觸 、氧化矽 、濕式化學氧化法 、矽晶太陽能電池 |
| 外文關鍵詞: | passivated contact, silicon oxide, wet chemical oxidation method, silicon solar cell |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在矽晶太陽能電池中表面鈍化一直是設計以及優化的重要的目標,從早期的只有背電場的鈍化,到後來研究者開始研究正面氮化矽鈍化,當正面鈍化已經研究完善時,研究者又開始把目標轉移到另一個嚴重的複合區域—電池的背表面。在90年代,新南威爾斯大學(UNSW)開始引入介質層的鈍化局部開孔的PECR/PERL等設計,解決了背面的鈍化的問題,但開孔處嚴重的複合速率(Recombination Rate)還是無法解決,因此開始有研究希望能夠解決開孔問題,鈍化接觸(Passivated Contact)的技術開始被提出。
本研究利用濕式化學氧化法(Wet chemical oxidation)、光化學氧化法,電漿輔助化學氣相沉積法,在氧化矽薄膜上堆疊氮化矽薄膜,量測矽晶片載子生命週期(lifetime),其中以濕式化學氧化法載子生命週期442 us鈍化效果最好,利用傅立葉轉換紅外光譜(FTIR),從圖譜可以得知在1080 cm-1的位置證明有氧化物Si-O-Si(stretching)鍵結。本研究將針對濕式化學氧化法來生長氧化矽薄膜,調變不同的參數條件,搭配熱處理,載子生命週期可以提升至1108 us,探討薄膜鈍化的特性,找出結構緻密性較高以及較低的漏電流密度的氧化矽薄膜。
最後將氧化矽薄膜應用於矽晶太陽能電池上,和無氧化矽鈍化薄膜的矽晶太陽能電池做光電轉換效率比較,最後得到具鈍化接觸層的矽晶太陽能電池開路電壓從原本551 mV提升至625 mV(上升13 %)、短路電流29.8 mA、填充因子0.59,效率能從10.8 %提升至11.5%。
In the silicon solar cell surface passivation has always been an important goal of design and optimization. In the early, the back electric field passivation has been stuided, and later researchers began to study the positive silicon nitride passivation, when the front passivation has been studied, the researchers also began to move the target to another serious compound area - the back surface of the cell. In the 1990s, the University of New South Wales (UNSW) began to introduce passivated PECR / PERL design of the dielectric layer to solve the problem of passivation on the back, but the serious recombination rate at the opening can not be resolved, so began to study hope to be able to solve the opening problem, passivated contact technology began to be raised.
In this study, silicon nitride film was deposited on silicon oxide films by wet chemical oxidation, photo-oxidation oxidation and plasma enhance chemical vapor deposition. The lifetime of silicon wafer was measured. FTIR can be seen from the figure that the position of the Si-O-Si bonding at the position of 1080 cm-1 by the wet chemical oxidation method. In this study, the silicon oxide film was grown by wet chemical oxidation method, and the change of different parameters. With the heat treatment, the lifetime can be increased to 1108 us, and the characteristics of film passivation were discussed. To find a structure of high density and low leakage current density of silicon oxide film.
Finally, the silicon oxide film was applied to the silicon solar cell, and the silicon solar cell with no silicon oxide film is compared with the photoelectric conversion efficiency. The open-circuit voltage of the silicon solar cell with the passivation layer was increased from the original 551 mV to 625 mV (up 13%), short circuit current 29.8 mA, fill factor 0.59, efficiency from 10.8% to 11.5%.
[1] “Renewables 2017 Global Status Report”, Renewable Energy Policy Network for
the 21st Century , pp. 29 ,2017.
[2] Marco Ernst, Daniel Walter, Andreas Fell, Bianca Lim, and Klaus Weber “Efficiency Potential of P-Type Al2O3/SiNx Passivated PERC Solar Cells With
Locally Laser-Doped Rear Contacts” Ieee Journal of Photovoltaics, Vol.6,No.3,May 2016.
[3] Anamaria Moldovan, Frank FeldmannI Kai Kaufmann, Susanne Richter,
Martina Wemer, Christian Hagendorf, Martin Zimmer, lochen Rentschl and Martin
Hermle “Tunnel Oxide Passivated Carrier-Selective Contacts based on ultra-thin
SiO2 Layers grown by Photo-Oxidation or Wet-Chemical Oxidation in ozonized
Water” IEEE 42nd Photovoltaic Specialist Conference (PVSC) page:1~6. 2015
[4] H. Kobayashi , K. Imamura, W.-B. Kim, S.-S. Im, Asuha“Nitric acid
oxidation of Si (NAOS) method for low temperature fabrication of SiO2/Si and
SiO2/SiC structures” Applied Surface Science 256 5744–5756. 2010
[5] David L. Young, William Nemeth, Sachit Grover, Andrew Norman,
Benjamin G. Lee, Paul Stradins National Renewable Energy Laboratory,
Golden,CO,80401 USA “Carrier-Selective, Passivated Contacts for High
Efficiency Silicon Solar Cells Based on Transparent Conducting Oxides”
IEEE 40th Photovoltaic Specialist Conference (PVSC) page:1~5. 2014
[6] Henry Hieslmair, Ian Latchford, Lisa Mandrell, Moon Chun & Babak Adibi,
“Ion Implantation for silicon solar cells”, Intevac, Santa Clara, California, USA
[7] Yuguo Tao, ijaykumar Upadhyaya , Ying-Yuan Huang, Chia-Wei Chen, Keenan
Jones, Ajeet Rohatgi “Carrier Selective Tunnel Oxide Passivated Contact Enabling
21.4% Efficient Large-area N-type Silicon Solar Cells” IEEE 43rd.
Photovoltaic Specialists Conference (PVSC) page:2531~2535. 2016
[8] David L. Young, William Nemeth, Sachit Grover, Andrew Norman, Benjamin G.
Lee, Paul Stradins “Carrier-Selective, Passivated Contacts for High Efficiency
Silicon Solar Cells Based on Transparent Conducting Oxides ”National Renewable
Energy Laboratory, Golden, CO, 80401 USA 2014.
[9] Shin-ichi Muramatsu, Tsuyoshi Uematsu, Hiroyuki Ohtsuka, Yoshiaki
Yazawa,Terunori Warabisako, Hiroshi Nagayoshi, Kouichi Kamisako, “ Effect of hydrogen radical annealing on SiN passivated solar cells”. Solar Energy Materials and Solar Cells. 65(1 -4): p. 599-606. 2001
[10] Youngseok Lee, Daeyeong Gong, Nagarajan Balaji, Youn-Jung Lee and Junsin Yi “ Stability of SiNX/SiNX double stack antireflection coating for single crystalline silicon solar cells. ” Nanoscale Research Letters. 7: p.1-6. 2012
[11] Dauwe, Stefan, Lutz Mittelstädt, Axel Metz, Rudolf Hezel.“Experimental evidence of parasitic shunting in silicon nitride rearsurface passivated solar cells. ”Progress in Photovoltaics. 10(4): p. 271 -278. 2002
[12] S. Salemi1, N. Goldsman , D. P. Ettisserry, Akturk, and Lelis “The effect of defects and their passivation on the density of states of the 4H-silicon-carbide/silicon-dioxide interface”. Journal of Applied Physics.113(5).2013
[13] Suhaila Sepeai, M. Y. Sulaiman, Kamaruzzaman Sopian, and Saleem H. Zaidi “Surface passivation studies on n+pp+ bifacial solar cell. ” International Journal of Photoenergy, 2012.
[14] Ben Rabha, M. Salem and M.Gaidi. “Monocrystalline silicon surface passivation by Al2O3/porous silicon combined treatment. ” Materials Science and Engineering B-Advanced Functional Solid-State Materials. 178(9): p. 695-697. 2013
[15] G. Seguini1, E. Cianci1, C. Wiemer1, D. Saynova, J. A. M. van Roosmalen2“Si surface passivation by Al2O3 thin films deposited using a low thermal budget atomic layer deposition process. ” Applied Physics Letters. 102(13). 2013.
[16] Lachlan E.Blacka, Teng C.Khoa, Keith R.McIntoshb. “Surface passivation of boron-diffused p-type silicon surfaces with (100) and (111) orientations by ald Al2O3 layers. ” Ieee Journal of Photovoltaics. 3(2): p. 678-683. 2013
[17] Christoph Schwab, Andreas Wolf, Martin Graf, Nico Wohrle, Saskia K ¨ uhnhold, Johannes Greulich,Gero Kastner, Daniel Biro, and Ralf Preu “Recombination and optical properties of wet chemically polished thermal oxide passivated si surfaces. ”Ieee Journal of Photovoltaics. 3(2): p.613-620. 2013
[18] Mihailetchi, V.D., Y. Komatsu, and L.J. Geerligs, “Nitric acid pretreatment for the passivation of boron emitters for n-type base silicon solar cells. ”Applied Physics Letters, 2008.
[19] Takahashi, M., et al., “Ultrathin silicon oxynitride formed by low-energy electron impact plasma nitridation and chemical oxidation methods. ” Journal of Applied Physics. p. 726-731. 2003
[20] Pincik, E., et al., “On interface properties of ultra-thin and very-thin oxide/a-Si : H structures prepared by oxygen based plasmas and chemical oxidation. ” Applied Surface Science. 253(16): p. 6697-6715. 2007.
[21] Mizushima, S., et al., “Nitric acid method for fabrication of gate oxides in TFT. ”Applied Surface Science. 254(12): p. 3685-3689. 2008
[22] Kobayashi, H., et al., “ Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density. ”Journal of Applied Physics.94(11): p. 7328-7335. 2003
[23] Asuha, et al., “Nitric acid oxidation of silicon at similar to 120 ℃ to form 3.5-nm 716. SiO2/Si structure with good electrical characteristics. ”Applied Physics Letters. 85(17): p. 3783-3785. 2004
[24] Asuha, et al., “Postoxidation annealing treatments to improve Si/ultrathin SiO2 characteristics formed by nitric acid oxidation. ” Journal of the Electrochemical Society. 151(12): p. G824-G828. 2004
[25] Mihailetchi, V.D., Y. Komatsu, and L.J. Geerligs, “Nitric acid pretreatment for the passivation of boron emitters for n-type base silicon solar cells. ” Applied Physics Letters, 2008.
[26] Asuha, S. Imai, M. Takahashi, H. Kobayashi, Appl. Phys. Lett. 85 3783. 2004
[27] Asuha, S.-S. Im, M. Tanaka, S. Imai, M. Takahashi, H. Kobayashi, Surf. Sci. 600
2523. 2006
[28] S. Mizushima, S. Imai, Asuha, M. Takahashi, H. Kobayashi, Appl. Surf. Sci. 254
3685. 2008
[29] Donald A. Neamen, “Semiconductor Physics and Devices” , p.177–180, 2003.
[30] Bill Nemeth, David L. Young, Hao-Chih Yuan, Vincenzo LaSalvia, Andrew G.
Norman, Matthew Page,Benjamin G. Lee, Paul Stradins “Low Temperature
Si/SiOx/pc-Si Passivated Contacts to n-Type Si Solar Cells’ National Renewable
Energy Laboratory, Golden Colorado 80401 USA 2014
[31] Y. J. Chabal,Fundamental aspects of silicon oxidation: Springer-Verlag
Berlin,Heidelberg, New York, 200l.
[32] 工業技術研究院委託學術機構研究計畫期末報告,“應用於生醫檢測之光波
導氧化物薄膜製備及其光學常數之調控”,民國93年
[33] Asuha, et al., “Spectroscopic and electrical properties of ultrathin SiO2 layers formed with nitric acid. Surface Science”. 547(3): p. 275-283. 2003
[34] 黃惠良,曾百亨,太陽電池,五南出版社,民國九十七年
[35] 孟慶哲,方允樟,馬 雲,李文忠,金林峰,“退火溫度對 ITO 薄膜電導率的影響” 浙江師範大學數理與信息工程學院,2012
[36] Hirotoshi NagataTakashi ShinrikiKaori Shima, Masumi Tamai, and Eungi Min Haga, “Improvement of bonding strength between Au/Ti and films by Si layer insertion. ” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17, 1018 (1999)
[37] 彭永福,黃文堯,以溶膠凝膠法製備二氧化矽薄膜作TFT閘極絕緣層材料,國立中山大學光電工程學系,民國98年
[38] R Sharangpani and Sing-Pin Tay “ Effect of growth and annealing conditions on
interface charge of dry and wet oxides grown using rapid thermal oxidation. ”
Mattson Thermal Products, Inc., 4425 Fortran Drive, San Jose, CA 95134. 2002