跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅恩
LO, EN
論文名稱: 跨國實質有效匯率關聯性分析
指導教授: 徐之強
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 經濟學系
Department of Economics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 45
中文關鍵詞: 外溢效果一般化預測誤差變異數分解實質有效匯率
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用Diebold and Yilmaz(2012)外溢效果指數來衡量關聯性,
    分析二十一個國家實質有效匯率指數波動間的關聯性,使用1994年到2015年月資料,實證研究結果顯示,沙烏地阿拉伯、美國和中國在全樣本分析下中最具影響力,也較容易受到其他國家影響,但影響力大過被影響的程度,在動態移動視窗(rolling-sample windows)分析中,總關聯性在2008年金融海嘯時期達到高峰,表示此時各國的實質有匯率間的關聯性強,而在2013年貨幣寬鬆政策退場後,關聯程度有驟降的現象,但從整個時間軸來看,關聯性是有向上攀升的情形。本研究特色在於使用實質有匯率取代以往常用的名目匯率,用以保留常被當成兌幣基準的貨幣。


    The Diebold-Yilmaz Connectedness Methodology, which employs the spillover effect index to measure connectedness (Diebold & Yilmaz, 2012 ), was adopted in the present study to analyze the connectedness of the real effective exchange rate (REER) index volatility recorded in the monthly data of 21 countries between 1994 and 2015. Empirical results indicate that under full-sample analysis, Saudi Arabia, the United States, and China were the prominent influencers. These countries were also easily influenced by other countries. The influence these countries exerted on others, however, far exceeds the extent to which they were influenced. Results of the rolling-sample windows show that total connectedness peaked during the financial crisis of 2008, indicating a strong connectedness among the REER indices of various countries throughout this period. Furthermore, a drastic decline in connectedness can be observed following the withdrawal of the Quantitative Easing Monetary Policy in 2013. Nonetheless, a steady rise in connectedness can be observed across the entire timeline. The main contribution of the present study is the use of REER indices as opposed to nominal exchange rate indices for the purpose of retaining the currencies that are commonly used as exchange benchmarks.

    1緒論......................................1 2文獻回顧...................................3 2.1市場關聯性的實證研究......................3 2.2衡量網絡關聯性的相關文獻..................5 3研究方法..................................6 3.1向量自我迴歸模型(VAR)....................6 3.2外溢指標................................6 4實證結果..................................11 4.1資料來源與處理...........................11 4.2靜態分析................................12 4.3動態分析................................17 4.4穩健性檢定(Robustness checks)...........20 4.4.1靜態分析..............................20 4.4.2動態分析..............................24 4.5結論....................................25 參考文獻...................................26 附錄.......................................29

    王冠閔、黃柏農(2004).「台灣股﹑匯市與美國股市關聯性探討」,臺灣經濟預測與政策,34:2,31-72。
    李榮謙(2013). 貨幣金融學概論,三版,東華書局。
    郭維裕、李淯靖、陳致綱、林建秀(2015).「台灣產業指數的外溢效果」,經濟論文叢刊,43:4,407-442。
    黃志典(2008). 國際金融:理論、政策與應用,前程文化。
    黃裕烈、管中閔(2014).向量自我迴歸模型:計量方法與R程式,初版,雙葉書廊。
    萬哲鈺(2005). 國際金融,四版,雙葉書廊。
    Acemoglu, D., V. M. Carvalho, A. Ozdaglar, and A. Tahbaz-Salehi(2012),”The Network Origins of Aggregate Fluctuations", Econometrica}, 80:5, 1977--2016.
    Acharya, V., L. Pedersen, T. Philippe, M. Richardson(2010), “Measuring systemic risk", Manuscript, Stern School, New York University.
    Baillie, R., T. Bollerslev, and M.R. Redfearn(1993), “Bear Squeezes, Volatility Spillovers and Speculative Attacks in the Hyperinflation 1920s Foreign Exchange", Journal of International Money and Finance, 12:5, 511--521.
    Diebold, F.X., and M. Nerlove(1989), “The Dynamics of Exchange Rate Volatility: A Multivariate Latent Factor ARCH Model", Journal of Applied Econometrics, 4, 1--21.
    Diebold, F.X., and K. Yilmaz(2009), “Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets", The Economic Journal, 119, 158--171.
    Diebold, F.X., and K. Yilmaz(2012), “Better to Give than to Receive: Predictive Directional Measurement of Volatility Spillovers", International Journal of Forecasting, 28, 57--66.
    Diebold, F.X., and K. Yilmaz(2014), “On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms", Journal of Econometrics, 182, 119--134.
    Dungey, M., and V.L. Martin(2004), “A Multifactor Model of Exchange Rates with Unanticipated Shocks: Measuring Contagion in the East Asian Currency Crisis", Journal of Emerging Market Finance, 3:3, 305--330.
    Granger, C.W.J.(1969), “Investigating Causal Relations by Econometric Models and Cross-Spectral Methods", Econometrica, 37:3, 424--438
    Inagaki, K.(2007), “Testing for volatility spillover between the British pound and the euro", Research in International Business and Finance, 21, 161--174.
    Jacomy, M., T. Venturini1, S. Heymann, and M. Bastian(2014), “ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software", PLoS ONE, 9:6, e98679.
    Kitamura, Y.(2010), “Testing for Intraday Interdependence and Volatility Spillover among the Euro, the Pound and the Swiss Franc Markets", Research in International Business and Finance, 24, 158--171.
    Lanne, M., and H. Nyberg(2014, “Generalised Forecast Error Variance Decomposition for Linear and Nonlinear Multivariate Models", CREATES Research Paper, 17.
    McMillan, D. G., and A.E.H. Speight(2010), “Return and Volatility Spillovers in Three Euro Exchange Rates", Journal of Economics and Business, 62, 79--93.
    Pesaran, H.H., and Y. Shin(1998)”Generalized impulse response analysis in linear multivariate model", Economics letters, 58, 17--29.

    QR CODE
    :::