跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林哲巨
Che-Chu Lin
論文名稱: 相位共軛反射鏡用於散射介質中光學聚焦之研究
The research of focusing light through turbid media by phase conjugate mirror
指導教授: 孫慶成
Ching-Cherng Sun
陳思妤
Szu-Yu Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 104
中文關鍵詞: 光學相位共軛反射鏡小貓式光學相位共軛反射鏡數位光學相位共軛反射鏡抑制散射反向聚焦
外文關鍵詞: Optical phase conjugation, Kitty-SPPCM, Digital optical phase conjugation, Turbidity suppression, Inverse focus
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們提出小貓式自泵浦相位共軛反射鏡(Kitty-SPPCM)之延伸,對此相位共軛反射鏡作不同工作區域之探討,發現具有高通濾波之特性之自泵浦相位共軛反射鏡,並在實驗中發現一新型自泵浦相位共軛反射鏡,其共軛光產生機制類似橋式自泵浦相位共軛反射鏡,此實驗結果對於Kitty-SPPCM的應用將有更多向性的發展。接著,我們介紹利用Kitty-SPPCM提升數位全像架構之精準度,並嘗試利用數位全像術控制散射光散射行為,以空間光調製器調制讀取光的相位分布,雷射光通過老鼠皮膚組織仍後形成聚焦點。但受限於光學穿透能力仍有其極限,因此我們提出新穎的虛擬物鏡的概念,用以解決光穿透能力的限制,在厚仿生組織內產生聚焦點。最後,我們分別在散射片與老鼠皮膚所模擬的仿生模型中成功產生反向聚焦光。這項實驗的成功為厚生物體中顯微影像技術開啟了一扇窗,提供4pi技術應用於厚生物體之可能性,亦可被應用於厚生物體顯微檢測,以提升二倍頻及螢光訊號之強度。


    Base on the Kitty self-pumped phase conjugate mirror (Kitty-SPPCM), a study for the incidence geometry to extend the accepted incidence position is presented and demonstrated in this thesis. When the incidence position is changed, a Kitty-SPPCM with high-pass filtering and a different SPPCM similar to the Bridge-SPPCM can be found. These conjugators extend the accepted incidence position range and angle, and it is helpful to apply the SPPCM in various new applications. The counter-directional Kitty-SPPCM is applied to optimize digital optical phase conjugation (DOPC) system alignment. With the precise DOPC system, the probing light can focus a spot through a mice’s skin. However, there is always a limit in optical penetration depth. A novel method is presented to focus light inside thick bio-tissue by a virtual objective lens, and a four-wave mixing system forming the virtual objective lens is demonstrated in experiment. This research is helpful to the 4-pi, second harmonic generation (SHG) and flourensence microscopy.

    目錄 摘要 I Abstract II 致謝 III 目錄 VI 圖目錄 IX 表目錄 XV 第一章 緒論 1 1-1散射原理與發展 1 1-2研究動機 3 1-3論文大綱與安排 4 第二章 全像術與光折變效應 6 2-1傳統全像術之原理 6 2-2光折變效應 9 2-2-1價傳導模型(band conduction model) 10 2-2-2 Kukhtarev能階傳導模式 11 2-2-3兩道平面波干涉造成的光折變效應 14 2-3光折變晶體 15 2-4結論 17 第三章 BaTiO3晶體應用於自泵浦相位共軛鏡之研究 19 3-1 BaTiO3晶體特性 19 3-2雙波混合原理與光扇效應 20 3-3 BaTiO3晶體應用於自泵相位共軛鏡之研究 22 3-4結論 34 第四章 抑制散射之研究 36 4-1利用DOPC抑制散射研究之發展 37 4-2數位光學相位共軛鏡(DOPC)系統之建立 39 4-2-1對向式Kitty-SPPCM應用於DOPC系統對位 40 4-2-2 DOPC相位分布擷取與共軛訊號的產生 42 4-3 DOPC抑制散射光實驗 45 4-4結論 51 第五章 利用光學共軛鏡在厚組織內產生聚焦光 52 5-1虛擬物鏡之概念 52 5-2虛擬物鏡之實驗 56 5-2-1實驗架構選擇與散射材料介紹 56 5-2-2實驗架構 58 5-2-3抗水分子干擾之實驗架構 60 5-3仿生組織中產生虛擬物鏡之實驗 63 5-3-1仿生組織之製作 64 5-3-2實驗方法與結果 65 5-4結論 69 第六章 總結 70 參考文獻 73 中英文名詞對照表 82

    [1] J. C. Stover, Optical scattering measurement and analysis (McGraw-Hill, New York , Inc., 1990).
    [2] A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533-535 (1981).
    [3] H. C. van de Hulst, Light scattering by small particles (Dover, New York, 1981).
    [4] P. S. Heckbert, “Simulating global illumination using adaptive meshing,” Ph.D thesis, University of California, Berkeley (1991).
    [5] F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4, 767 (1965).
    [6] C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171 (1991).
    [7] C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang and M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quan. Electron. 28, 1509 (1996).
    [8] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012 (1995).
    [9] Q. Gao and R. Kostuk, “Improvement to holographic digital data-storage systems with random and pseudorandom phase masks,” Appl. Opt. 36, 4853 (1997).
    [10] G. Unnikrishnan, Joby Joseph, and K. Singh, “Optical encryption system that uses phase conjugation in a photorefractive crystal,” Appl. Opt. 37, 8181 (1998).
    [11] H. Lee and S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 62, 2191 (1993).
    [12] C. C. Sun, W. C. Su, B. Wang and Y. Ouyang, “Diffraction Sensitivity of Holograms with Random Phase Encoding,” Opt. Commun. 175, 67 (2000).
    [13] C. C. Sun, and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253 (2001).
    [14] C. C. Sun, W. C. Su, B. Wang and A. E. T. Chiou, “Lateral Shifting Sensitivity of a Ground Glass for Holographic Encryption and Multiplexing Using Phase Conjugate Readout Algorithm,” Opt. Commun. 191, 209 (2001).
    [15] C. C. Sun, Y. M. Chen, and W. C. Su, “An all-optical fiber sensing system based on random phase encoding and volume holographic interconnection,” Opt. Eng. 40, 160 (2001).
    [16] C. C. Sun, C. Y. Hsu, C. H. Wu, and W. C. Su, “Spatial filtering of three-dimensional objects based on volume holography,” Opt. Eng. 42, 2788 (2003).
    [17] Y. Jeong and B. Lee, “Effect of a random pattern through a multimode-fiber bundle on angular and spatial selectivity in volume holograms: experiments and theory,” Appl. Opt. 41, 4085 (2002).
    [18] T. C. Teng, W. J. Zhong, S. H. Ma, C. C. Sun, “Volume Holographic Filters for Rotational Sensing of 3D Objects,” Appl. Opt. 46, 1456-1459 (2007)..
    [19] S. H. Shin and B. Javidi, “3-Dimensional object recognition by use of a photorefractive volume holographic processor,” Opt. Lett. 26, 1161(2001).
    [20] C. C. Chang, K. L. Russel and G. K. Wu, “Optical holographic memory using angular-rotationally phase-coded multiplexing in a LiNbO3:Fe crystal,” Appl. Phys. B 72, 307 (2001).
    [21] 蘇威佳,三維亂相編碼之體積全像及其應用,國立中央大學光電所博士論文,中華民國九十年。
    [22] J. W. Goodman, W. H. Huntley, Jr., D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction image through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
    [23] J. D. Gaskill, “Imaging through a randomly inhomogeneous medium by wavefront reconstruction,” J. Opt. Soc. Am. 58, 600–608 (1968).
    [24] H.F. Yau, J.P. Liu, H.Y. Lee, Y.Z. Chen, “Single beam one-way imaging through a thick dynamic turbulent medium,” Appl. Opt. 45, 4625-4630 (2006).
    [25] Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
    [26] M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express 18, 25–30 (2010).
    [27] P. Lai, X. Xu, H. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt. 16, 080505 (2011).
    [28] M. Cui, and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444–3455 (2010)
    [29] I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 081108 (2012).
    [30] K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
    [31] K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound–light interaction in deep tissue microscopy,” Sci. Rep. 2, 748 (2012).
    [32] B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
    [33] Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nature Commun. 3, 928 (2012).
    [34] P. Lai, X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing in biological tissue,” J. Biomed. Opt. 17, 030506 (2013).
    [35] G. Lerosey and M. Fink, “ACOUSTO-OPTIC IMAGING : Merging the best of two worlds,” Nat. Photonics 7, 265–267 (2013).
    [36] M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301-304 (2007).
    [37] I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [38] I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16, 67–80 (2008).
    [39] C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 043903 (2009).
    [40] T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photon. 4, 388–394 (2010).
    [41] I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35, 1245–1247 (2010).
    [42] I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).
    [43] S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
    [44] S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Communications 1, 81 (2010).
    [45] D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun.2, 447 (2011).
    [46] E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
    [47] E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Optimal concentration of light in turbid materials,” J. Opt. Soc. Am. B 28, 1200–1203 (2011).
    [48] D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express19, 4017–4029 (2011).
    [49] A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
    [50] D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media.” Opt. Express 20, 1733–1740 (2012).
    [51] K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, Reflectance and texture of real-world surfaces,” ACM Trans. Graph. 18, 1–34 (1999).
    [52] G. J. Ward, “Measuring and modeling anisotropic reflection,” Comput. Graph. 26, 265–272 (1992).
    [53] Y. Y. Yu, Y. L. Chen, W. H. Chen, H. X. Chen, X. H. Lee, C. C. Lin, and C. C. Sun, “Bidirectional scattering distribution function by screen imaging synthesis,” Opt. Express 20, 1268–1280 (2012).
    [54] 陳彥霖,新型散射元件全場域光場量測之研究,國立中央大學照明與顯示科技研究所碩士論文,中華民國一百年。
    [55] D. Gabor, "A New Microscopic Principle," Nature 161, 777-778 (1948).
    [56] E. N. Leith, and J. Upatnieks, "Reconstructed Wavefronts and Communication Theory," J. Opt. Soc. Am. 52, 1123-1128 (1962).
    [57] E. N. Leith, and J. Upatnieks, "Wavefront Reconstruction with Continuous-Tone Objects," J. Opt. Soc. Am. 53, 1377-1381 (1963).
    [58] J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
    [59] S. Yin, P. Purwosumarto, and F. T. S. Yu, "Application of fiber specklegram sensor to fine angular alignment," Opt. Commun. 170, 15–21 (1999).
    [60] G. A. Rakuljic, V. Levya, and Yariv, "Optical data storage by using orthogonal wavelength-multiplexed volume holograms," Opt. Lett. 17, 1471-1473 (1992).
    [61] S. F. Chen, C. S. Wu, and C. C. Sun, "Design for a High Dense Wavelength Division Multiplexer Based on Volume Holographic Gratings," Opt. Eng. 43, 2028-2033 (2004).
    [62] G. Barbastathis, M. Balberg, and D. J. Brady, "Confocal microscopy with a volume holographic filter," Opt. Lett. 24 811-813(1999)
    [63] A. Sinha, G. Barbastathis, W. Liu, and D. Psaltis, "Imaging using volume holograms," Opt. Eng. 43, 1957 (2004).
    [64] W. Liu, G. Barbastathis, and D. Psaltis, "Volume holographic hyperspectral imaging," Appl. Opt. 43, 3581 (2004).
    [65] C. C. Sun, T. C. Teng and Y. W. Yu, "One-dimensional Optical Imaging with Volume Holographic Optical Element," Opt. Lett. 30, 1132-1134 (2005).
    [66] C. C. Sun, Y. M. Chen, and W. C. Su, "An all-optical fiber sensing system based on random phase encoding and volume holographic interconnection," Opt. Eng. 40, 160-161 (2001).
    [67] C. C. Sun, Y. Ouyang, W. C. Su, and E. T. Chiou, "All-optical angular sensing based on holography multiplexing with spherical waves," Opt. Eng. 41, 2809-2813 (2002).
    [68] B. Wang, J. Y. Chang, W. C. Su, and C. C. Sun, "Optical security using a random binary phase code in volume holograms," Opt. Eng. 43, 2048-2052 (2004).
    [69] T. C. Teng, P. C. Ou, and C. C. Sun, "Volume holographic Optical Elements for Point-to-point Self-focusing with Local Crosstalk," Opt. Lett. 30, 3015-3017 (2005).
    [70] C. C. Sun, C. Y. Hsu, W. C. Su, Y. Ouyang, and J. Y. Chang, "A novel algorithm for high sensitivity in measuring surface variation based on volume holography," Micro. Opt. Tech. Lett. 34, 319-321(2002).
    [71] Y. Jeong and B. Lee, "Effect of a random pattern through a multimode-fiber bundle on angular and spatial selectivity in volume holograms: experiments and theory," Appl. Opt. 41, 4085-4091 (2002).
    [72] S. H. Shin and B. Javidi, "Three-dimensional object recognition by use of a photorefractive processor," Opt. Lett. 26, 1161-1163 (2001).
    [73] B. Javidi and E. Tajahuerce, "Three-dimensinal object recognition by use of digital holography," Opt. Eng. 25, 610-612 (2000).
    [74] C. C. Sun, C. Y. Hsu, C. H. Wu, and W. C. Su, "Spatial filtering of three-dimensional objects based on volume holography," Opt. Eng. 42, 2788-2789 (2003).
    [75] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72-74 (1966).
    [76] F. S. Chen, "Optically induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389 (1969).
    [77] L. Young, W. K. Y. Wing, M. L. W. Thewait and W. D. Crnish, "Theory of formation of phase holograms in lithium niobate," Appl. Phys. Lett. 24, 264 (1974).
    [78] G. A. Alphonse, R. C. Alig, O. L. Staebler and W. Phillips, "Time dependent characteristics of photo-induced space charge field and phase holograms in lithium neonate and other photorefractive materials," RCA Review 36, 213 (1975).
    [79] D. Vonder Linde and A. M. Glass, "Photorefractive effects for reversible holographic storage of information," J. Appl. Phys. 8, 85 (1975).
    [80] D. M. Kim, R. R. Shah, T. A. Rabson and F. K. Tittel, "Nonlinear dynamic theory for photorefractive phase hologram formation," Appl. Phys. Lett. 28, 338 (1976).
    [81] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin and V. L. Vinetskii, "Holographic storage in electro-optic crtstals. I. Steady state," Ferroelectrics 22, 949 (1979).
    [82] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, (Springer, New York, 2000).
    [83] B. Fischer, M. Cronin-Golomb, J. O. White, and A. Yariv, "Amplified reflection, transmission, and self-os cillation in real-time holography," Opt. Lett. 6, 519 (1981).
    [84] H. A. Eggert, F. Kalkum, K. Buse, and B. Sturman, "Bragg selectivity of space-charge gratings in multidomain lithium niobate crystals," Opt. Lett. 31, 1256-1258 (2006).
    [85] P. Boffi, D. Piccinin, M. C. Ubaldi, and M. Martinelli, "All-Optical Pattern Recognition for Digital Real-Time Information Processing," Appl. Opt. 42, 4670-4680 (2003).
    [86] F. Dubois, F. De Schryver, and B. Biran, "Theoretical study of size effects in volume holograms," J. Opt. Soc. Am. A 8, 270 (1991).
    [87] W. C. Su and C. C. Sun, "Optical pattern interconnections using random phase encoding in volume holograms," Opt. Commun. 213, 259-265(2002).
    [88] G. C. Valley, and M. B. Klein, “Optimal properties of photo-refractive materials for optical data processing,” Opt. Eng. 22, 704-7ll, (1983).
    [89] R. L. Townsend and J. T. LaMachia, "Optical induced refractive index change in BaTiO3," J. Appl. Phys. 4, 5188 (1970).
    [90] M. Carrascosa, and F. Agollo-Lopez, "Kinetics for optical erasure of sinusoidal holographic gratings in photorefractive materials", IEEE J. Quantum Electron. 22, 1369-1375 (1986).
    [91] G. C. Valley, "Two-wave mixing with an applied field and a moving grating", J. Opt. Soc. Am. B 1, 868-873 (1984).
    [92] P. Gunter, and P. J. Huignard, "Photorefractive materials and their application, I, ,Springer-Verlag, Berlin. 237-262 (1988).
    [93] J. C. Fabre, and J. M. C. Jonathan, G. Roosen, "Photorefractive beam coupling in GaAs and InP generated by nanosecond light pulses", J. Opt. Soc. Am. B 5, 1730-1736 (1988).
    [94] M. H. Majies Arat, C. Vijayan , and R. S. Sirohi, “Figure-of-Merit Parameter of Photorefractive Crystals,” Proc. SPIE 4417, 461-470 (2001).
    [95] J. Feinberg, “Self-pumped continuous-wave phase-conjugator using internal reflection,” Opt. Lett. 7, 486 (1982).
    [96] 孫慶成,“鈦酸鋇之光折非均向繞射與應用之研究,"國立中央大學光電所博士論文,中華民國八十二年.
    [97] W. R. Klein, "Theoretical Efficiency of Bragg Devices," Proc. IEEE 803-804 (1966).
    [98] M. B. Klein, “Photorefractive properties of BaTiO3,” in Photorefractive Materials and Their Applications I, P. Günter, J.-P. Huignard, eds., (Springer-Verlag, Berlin, 1988), pp. 195–236.
    [99] H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
    [100] J. Feinberg, “continuous-wave self-pumped phase conjugator with wide field of view,” Opt. Lett. 8, 480-482 (1983).
    [101] C. C. Sun, R. H. Tsou, W. Shen, H. H. Chang, J. Y. Chang and M.W. Chang, “Shearing interferometer with a Kitty self-pumped phase-conjugate mirror,” Appl. Opt. 35, 1815 (1996).
    [102] M. D. Ewbank, R. A. Vazquez, R. R. Neurgaonkar, and J. Feinberg, "Mutually pumped phase conjugation in photorefractive strontium barium niobate: theory and experiment," J. Opt. Soc. Am. B 7, 2306-2316 (1990).
    [103] E. J. Sharp, W. W. Clark III, M. J. Miller, G. L. Wood, B. D. Monson, G. J. Salamo, and R. R. Neurgaonkar, “Double phase conjugation in tungsten bronze crystals,” Appl. Opt. 29, 743-749 (1990)
    [104] K. R. MacDonald and J. Feinberg, “Theory of a self-pumped phase conjugator with two interaction regions,” J. Opt. Soc. Am. 73, 548 (1983).
    [105] G. N. Hounsfield, "Computed medical imaging, Nobel lecture 1979," J. Comput. Assist. Tomogr. 4, 665–674 (1980).
    [106] J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrasonic imaging 13, 111-134 (1991).
    [107] P. J. Cassidy and G. K. Radda, “Molecular imaging perspectives,” J. R. Soc. Interface 2, 133-144 (2005).
    [108] M. Minsky, Microscopy apparatus, US patent 3,013,467, Dec. 19 (1961).
    [109] W. Denk, J.H. Strickler, and W.W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
    [110] I. Freund and M. Deutsch, “2nd-Harmonic Microscopy of Biological Tissue,” Opt. Lett. 11, 94-96 (1986).
    [111] W.R. Zipfel, R.M. Williams, R. Christie, A.Y. Nikitin, B.T. Hyman, and W.W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075-7080 (2003).
    [112] S. W. Hell and E.H.K. Stelzer, “Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using 2-photon excitation,” Opt. Commun. 93 277–282 (1992).
    [113] S. W. Hell and E.H.K. Stelzer, “Properties of a 4Pi-confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992).
    [114] Y. Pu, M. Centurion, and D. Psaltis, "Harmonic holography: a new holographic principle," Appl. Opt. 47, A103-A110 (2008).
    [115] C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17, 2880–2891 (2009).
    [116] C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010).
    [117] C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
    [118] X. Yang, C. L. Hsieh, Y. Pu, and D. Psaltis, “Three dimensional scanning microscopy through thin turbid media,” Opt. Express 20, 2500–2506 (2012).
    [119] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012).
    [120] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4, 260–270 (2013).
    [121] T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, "Digital optical phase conjugation for delivering two-dimensional images through turbid media," Sci. Rep. 3, 1909 (2013).
    [122] 陳瑋鑫,小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究,國立中央大學光電所碩士論文,中華民國一百零二年。
    [123] W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quant. Electron. 26, 2166-2185 (1990).
    [124] M. Han, G. Giese, and J. F. Bille, “Second harmonic generation imaging of collagen fibrils in cornea and sclera,” Opt. Express. 13, 5791–5797 (2005).
    [125] R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005).
    [126] T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections,” Biophys. J. 91, 4665–4677 (2006).
    [127] C. P. Pfeffer, B. R. Olsen, and F. Le´gare´, “Second harmonic generation imaging of fascia within thick tissue block,” Opt. Express. 15, 7296–7302 (2007).
    [128] F. Le´gare´, C. Pfeffer, and B. R. Olsen, “The role of backscattering in SHG tissue imaging,” Biophys. J. 93, 1312–1320 (2007).
    [129] P. J. Campagnola and C. Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photonics Rev. 5, 13–26 (2011).
    [130] J. P. Kratohvil, M. P. Lee, and M. Kerker, “Angular distribution of fluorescence from small particles,” Appl. Opt. 17, 1978–1980 (1978).
    [131] S. Druger and P. J. McNulty, “Radiation patterns of fluorescence from molecules embedded in small particles: general case,” Appl. Opt. 22, 75–82 (1983).
    [132] M. Dyba and S. W. Hell, “Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002).
    [133] R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nature Methods 5, 539–544 (2008).
    [134] S. W. Hell, "Toward fluorescence nanoscopy," Nat. Biotechnol. 21, 1347-1355 (2003).
    [135] I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express 18, 2852-2857 (2005).
    [136] A. Casaburi and G. Pesce and P. Zem´anek and A. Sasso, “Two- and three-beam interferometric optical tweezers,” Opt. Commun. 251, 393–404 (2005).
    [137] T. Čižmár, O. Brzobohaty´, K. Dholakia, and P. Zema´nek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
    [138] D. Khimich, R. Nouvian, R. Pujol, S. t. Dieck, A. Egner, E. D. Gundelfinger, and T. Moser, “Hair cell synaptic ribbons are essential for synchronous auditory signaling,” Nature 434, 889–894 ( 2005 ).
    [139] A. Egner, and S.W. Hell, “Fluorescence microscopy with super-resolved optical sections,” Trends Cell Biol. 15, 207–215 (2005).
    [140] S.W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nature Photon. 3, 381–387 (2009).
    [141] A. Yariv and D. M. Pepper, “Amplified reflection, phase conjugation and oscillation in degenerate four-wave mixing,” Opt. Lett. 1, 16 (1977).

    QR CODE
    :::