跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張景星
Ching-hsing Chang
論文名稱: 以銀/二氧化鈦奈米複合結構提升染料敏化太陽能電池效率
Enhanced Conversion Efficiency of Dye-sensitized Solar Cell by Utilizing Ag/TiO2 Composite Nanostructures
指導教授: 李勝偉
Sheng-Wei Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 60
中文關鍵詞: 染料敏化太陽能電池二氧化鈦
外文關鍵詞: titanium dioxide, dye-sensitized solar cell
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用銀/二氧化鈦奈米複合結構,應用於染料敏化太陽能電池(DSSC)陽極部分,我們利用旋轉塗部法將二氧化鈦奈米粒子 (TiNPs)覆蓋在FTO上,用來組裝染料敏化太陽能電池參考電池,更進一步地加上銀/二氧化鈦奈米複合結構,提升染料敏化太陽能電池效率。並藉由SEM、XRD、Raman、UV-VIS、TEM、XPS來進行材料分析。接著將實驗中所製備完成的二氧化鈦奈米複合結構進行染料敏化太陽能電池組裝,並進一步地利用太陽光模擬器量測系統、入射光電轉換效率系統 (IPCE),去量測其太陽能電池的效率與入射光電轉換效率。由這些二氧化鈦奈米複合結構可分為三大部分。
    第一部分為添加二氧化鈦奈米管 (TiNTs)對於效率的影響,研究結果顯示,在加入二氧化鈦奈米管之後效率2.58%提升至2.80%,效率提升其主要原因為陽極厚度增加,可使染料吸附量變高,因此提升了效率。第二部分探討在二氧化鈦奈米管上鍍一層10nm的銀粒子,想利用銀粒子在表面電漿共振的效應,使電池效率增加,從實驗數據顯示再添加銀粒子之後幾乎有明顯的提升。第三部分討論將二氧化鈦奈米結構浸泡飽和的硝酸鋇溶液,使得二氧化鈦表面可以形成鈦酸鋇,由於鈦酸鋇有較高的等電點,可使染料吸附量變高。因此將三個想法結合在一起,製備出BaTiO3/Ag/TiNT/TiNP結構與BaTiO3/TiNT/Ag/TiNP太陽能電池效率分別提升至3.31%與3.07%。


    In this study, the Ag/TiO2 composite nanostructures were utilized as the photoanode in dye-sensitized solar cells (DSSC). For the reference cell, the titanium dioxide nanoparticles (TiNPs) was coated onto the FTO substrate by spin coating technique. The Ag/TiO2 composite nanostructures were applied to enhance the conversion efficiency of the DSSC. The material characteristics were analyzed by SEM, XRD, TEM, XPS, vmicro-Raman and UV-Vis measurements. The cells were then assembled an their I-V characteristics and incident photo conversion efficiency (IPCE) were measured by using the sunlight simulator measurement system.
    The nanocomposite structures were implemented into DSSC in three ways. The first way is to introduce titanium dioxide nanotubes (TiNTs) into the DSSC. The results show that the efficiency was increased from 2.58% to 2.80% by increasing the photoanode thickness. It allows the dyes to be highly adsorbed, thus enhancing the conversion efficiency. The second way is to deposit silver particles acting as surface plasmons in DSSC. The cell efficiency was found to improve significantly as compared to the reference cell. The third way is by soaking the TiNT in saturated barium nitrate solution, modifying the TiNT surface by forming barium titanate. The efficiency was further enhanced. It was speculated that the dyes was highly adsorbed due to the higher isoelectric point of barium titanate. The integration of the DSSC with the BaTiO3/Ag/TiNT/TiNP and BaTiO3/TiNT/Ag/TiNP structures increased the solar cell efficiency up to 3.31% and 3.07%, respectively.

    摘要.......................................................i Abstract..................................................ii 致謝 ....................................................iii 目錄......................................................iv 圖目錄....................................................vii 表目錄.....................................................ix 第一章 緒論.................................................1 1.1 前言...................................................1 1.2太陽能電池簡介............................................1 1.2.1結晶矽太陽能電池........................................1 1.2.2薄膜太陽能電池..........................................2 1.2.3有機太陽能電池..........................................2 1.2.4有機/無機奈米複合材料太陽能電池............................2 1.3二氧化鈦簡介..............................................3 1.3.1二氧化鈦結構............................................3 1.3.2二氧化鈦奈米粉體製備.....................................3 1.3.2二氧化鈦奈米管製備.......................................5 1.4染料敏化太陽能電池結構......................................9 1.4.1透明導電薄膜............................................9 1.4.2二氧化鈦光電極..........................................9 1.4.3染料敏化劑.............................................9 1.4.4電解液................................................10 1.4.5白金對電極............................................11 1.5染料敏化太陽能電池整體結構與工作原理.........................11 1.6研究動機................................................15 參考文獻...................................................16 第二章 實驗步驟.............................................22 2.1實驗藥品................................................22 2.2實驗儀器................................................23 2.2.1電子槍蒸鍍系統(Electron Beam Evaporation)..............23 2.2.2高溫爐管加熱系統(High Temperature Ttube Heating System) ..........................................................23 2.2.3掃描式電子顯微鏡(Scanning Electron Microscopy)..........24 2.2.4 X光粉末繞射儀( X-Ray Diffraction).....................25 2.2.5紫外光-可見光光譜儀(UV-VIS Spectrophotometer)...........26 2.2.6顯微拉曼光譜儀(Micro-Raman Spectrometer)...............27 2.2.7X光光墊子能譜儀(X-Ray Photoelectron Spectrometer)......28 2.2.8穿透式電子顯微鏡 (Transmission Electron Microscpy)......28 2.2.9入射光電轉換效率(Incident Photon to Current Conversion Efficiency)..............................................28 2.2.10太陽模擬光量測系統(Solar Simulator)....................29 2.3實驗方法................................................30 2.3.1製備與剝離銀/二氧化鈦奈米管陣列...........................30 2.3.2組裝染料敏化太陽能電池...................................31 第三章實驗結果與討論.........................................34 3.1材料分析................................................34 3.1.1二氧化鈦複合結構SEM影像分析..............................34 3.1.2二氧化鈦複合結構XRD圖譜分析..............................36 3.1.3二氧化鈦複合結構Micro-Raman圖譜分析......................38 3.1.4二氧化鈦複合結構UV-VIS圖譜分析...........................39 3.1.5二氧化鈦粒子TEM圖影像分析與XPS分析........................40 3.2太陽能電池效率量測分析.....................................41 3.2.1 光電轉換效率量測.......................................41 3.2.1 IPCE量測分析.........................................42 參考文獻...................................................45 第四章結論.................................................47

    1.1 黃惠良、蕭錫鍊、周明奇、林堅楊、江雨龍、曾百亨、李威儀、李世昌、林唯芳 著,太陽電池,五南出版社 (2008)。
    1.2 黃建昇,結晶矽太陽電池發展近況,工業材料雜誌 (2003)。
    1.3 郭明村,薄膜太陽電池發展近況,工業材料雜誌 (2003)。
    1.4 F. Hurd and R. Livingston, “The quantum yields of some dye-sensitized photooxidations” J. Phys. Chem., 44, 865 (1940).
    1.5 S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. I.” J. Phys. Chem., 69, 641 (1965).
    1.6 S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. II.” J. Phys. Chem., 69, 647 (1965).
    1.7 S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. III.” J. Phys. Chem., 69, 2834(1965).
    1.8 Kearns et al., “Evidence for the participation of 1.SIGMA.g+ and 1.DELTA.g oxygen in dye-sensitized photooxygenation reactions. I” J. Am. Chem. Soc., 89, 5455 (1967).
    1.9 高濂、鄭珊、張青紅 著,奈米光觸媒,五南出版社 (2004)。
    1.10 K. Madhusudan Reddy, C.V. Gopal Reddy and S.V. Manorama, “Preparation characterization, and spectral studies on nanocrystalline anatase TiO2,” J. Solid State Chem., 158, 180 (2001).
    1.11 M. Kang, S. J. Choung and J. Y. Park, “Photocatalytic performance of nanometer-sized FexOy/TiO2 particle synthesized by hydrothermal method,” Catal. Today, 87, 87 (2003).
    1.12 A. Jaroenworaluck1, W. Sunsaneeyametha1, N. Kosachan and R. Stevens, “Characteristics of silica‐coated TiO2 and its UV absorption for sunscreen cosmetic applications,” Surf. Interface Anal., 38,473 (2006).
    1.13 D. Zhang, T. Yoshida, T. Oekermann, K. Furuta1 and H. Minoura, “Room‐temperature synthesis of porous nanoparticulate TiO2 films for flexible dye‐sensitized solar cells,” Adv. Funct. Mater., 16, 1228 (2006).
    1.14 H. S. Bae, M. K. Lee, W. W. Kim and C. K. Rhee, “Dispersion properties of TiO2 nano-powder synthesized by homogeneous precipitation process at low temperatures,” Colloid. Surface. A, 220, 169 (2003).
    1.15 Y. H. Zhang, C. K. Chan, J. F. Porter and W. Guo, “Micro-Raman spectroscopic characterization of nanosized TiO2 powders prepared by vapor hydrolysis,” J. Mater. Res., 13, 2602 (1998).
    1.16 L. Zhao, A. T. Chien, F. F. Lange and J. S. Speck, “Microstructural development of BaTiO3 powders synthesized by aqueous methods,” J. Mater. Res., 11, 1325 (1996).
    1.17 S. Miao , Z. Liu , B. Han , J. Zhang , X. Yu , J. Du and Z. Sun, “Synthesis and characterization of TiO2–montmorillonite nanocomposites and their application for removal of methylene blue,” J. Mater. Chem., 16, 579 (2006).
    1.18 L. L. Tzarara, A. Wolcott, L.P. Xu, S. Chen, Z. Wen, J. Li, E. D. L. Rosa and J. Z. Zhang, “Nitrogen-doped and CdSe duantum-dot-sensitized nanocrystalline TiO2 Films for solar energy conversion Applications,” J. Phys. Chem. C, 112, 1182 (2008).
    1.19 D. S. Lee and T. K. Liu “Preparation of TiO2 Sol using TiCl4 as a precursor,” J. Sol-Gel Sci. Techn., 25, 121 (2002).
    1.20 N. Uekawa, M. Suzuki, T. Ohmiya, F. Mori, Y. J. Wu and K. Kakegawa, “Synthesis of rutile and anatase TiO2 nanoparticles from Ti-peroxy compound aqueous solution with polyols,” J. Mater. Res., 18, 797 (2003).
    1.21 J. Desilvestro, M. Gratzel, L. Kavan and J. Moser, “Highly efficient sensitization of titanium dioxide,” J. Am. Chem Soc., 107, 2988 (1985).
    1.22 B. O’Regan and M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 353, 737 (1991).
    1.23 張正華、李陵蘭、葉楚平、楊平華 著,有機與塑膠太陽能電池,五南出版社 (2007)。
    1.24 J. H. Park, S. Kim, S. Allen and J. Bard, “Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting,” Nano Lett., 6, 24 (2006).
    1.25 S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn and P. Schmuki , “Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications,” Nano Lett., 75, 1286 (2007).
    1.26 H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, “A new benchmark for TiO2 nanotube array growth by anodization,” J. Phys. Chem. C, 111, 7235 (2007).
    1.27 W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen and L. M. Peng, “CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes,” J. Am. Chem. Soc., 130, 1124 (2008).
    1.28 J. Qiu, W. Yu, X. Gao and X. Li, “Sol–gel assisted ZnO nanorod array template to synthesize TiO2 nanotube arrays,” Nanotechnology, 17, 4695 (2006).
    1.29 H. Tokudome, M. Miyauchi, “N-doped TiO2 nanotube with visible light activity,” 33, 1108 (2004).
    1.30 Q. Chen and D. Xu, “Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells,” J. Phys. Chem. C, 113, 6310 (2009).
    1.31 D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin and M. Gratzel, “Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells,” ACS Nano., 2, 1113 (2008).
    1.32 Q. Wang, K. Zhu, N. R. Neale and A. J. Frank, “Constructing ordered sensitized heterojunctions: bottom-up electrochemical synthesis of p-type semiconductors in oriented n-TiO2 nanotube arrays,” Nano Lett., 9, 806 (2009).
    1.33 C.C. Tsai and H. Teng, “Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment,” Chem. Mater., 16, 4532 (2004).
    1.34 T. Akita1, M. Okumura, K. Tanaka1, K. Ohkuma, M. Kohyama1, T. Koyanagi, M. Date, S. Tsubota and M. Haruta, “Transmission electron microscopy observation of the structure of TiO2 nanotube and Au/TiO2 nanotube catalyst,” Surf. Interface Anal., 37, 265 (2005).
    1.35 C. H. Lin, C. H. Lee, J. H. Chao, C. Y. Kuo, Y. C. Cheng, W. N. Huang, H. W. Chang, Y. M. Huang and M. K. Shih, “Photocatalytic generation of H2 Gas from neat ethanol over Pt/TiO2 nanotube catalysts,” Catal. Lett., 98,61 (2004).
    1.36 K. Shankar, J. I. Basham, N. K. Allam, O. K. Varghese, G. K. Mor, X. Feng, M. Paulose, J. A. Seabold, K. S. Choi and C. A. Grimes, “Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry,” J. Phys. Chem. C, 113, 6327 (2009).
    1.37 Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara and S. Yanagida, “Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization,” Phys. Chem. Chem. Phys., 7, 4157 (2005).
    1.38 H. F. Lu, F. Li, G. Liu, Z. G. Chen, D. W. Wang, H. T. Fang, G. Q. Lu, Z. H. Jiang and H. M. Cheng, “Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors.” Nanotechnology, 19, 1 (2008).
    1.39 K. Shankar, G. K. Mor, A. Fitzgerald and C. A. Grimes, “Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide−water mixtures,” J. Phys. Chem. C, 111, 21 (2007).
    1.40 Y. Liu, B. Zhou, J. Bai, J. Li, J. Zhang, Q. Zheng, X. Zhu and W. Cai, “Efficient photochemical water splitting and organic pollutant degradation by highly ordered TiO2 nanopore arrays,” Appl. Catal. B-Environ., 89, 142 (2009).
    1.41 P. Hoyer, “Formation of a titanium dioxide nanotube array,” Langmuir, 12, 1411 (1996).
    1.42 T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, “Formation of titanium oxide nanotube,” Langmuir, 14, 3160 (1997).
    1.43 胡啟章 著,電化學原理與方法,五南出版社 (2002)。
    1.44 C. C. Chen and S. J. Hsieh, “Evaluation of fluorine ion concentration in TiO2 NT Anodization process,” J. Electrochem. Soc., 157, K125 (2010).
    1.45 G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee and C. A. Grimes, ”Fabrication of tapered, conical-shaped titania nanotubes,” J. Mater. Res., 18, 2588 (2003).
    1.46 C. Pe’rez Leo’n, L. Kador, B. Peng and M. Thelakkat, ” Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV-Vis, Raman, and FTIR spectroscopies,” J. Phys. Chem. B, 110, 8723 (2006).
    1.47 M. Gratzel, “Photoelectrochemical cells,” Nature, 414, 338 (2001).
    1.48 D. Matthews, P. Infelta and M. Gratzel, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes,” Sol. Energ. Mat. Sol. C., 44, 119 (1996).
    1.49 M. Law, L. E. Green, J. C. Johnson, R. Saykally and P. Yang, ”Nanowire dye-sensitized solar calls” ,Nat. Mater., 4, 455 (2005).
    1.50 C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Graetzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications”, J. Am. Chem. Soc., 80, 3157 (1997).
    1.51 M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Gratzel ,”Conversion of light to electricity by cis-X2bis(2,2''-bipyridyl-4,4''-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes”, J. Am. Chem. Soc. , 115, 6382 (1993).
    3.1 Solbrand, A. Lindstrom, H. Rensmo, H. Hagfeldt and A. Lindquist, “National institute of advanced industrial science and technology,” J. Phys. Chem., 101, 2514 (1997).
    3.2 S. Nakade, S. Kambe, T. Kitamura, Y. Wada and S. Yanagida, “Effects of lithium ion density on electron transport in nanoporous TiO2 electrodes,” J. Phys. Chem. B, 105, 9150 (2001).
    3.3 W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin and Q. Chen, “Raman scattering study on anatase TiO2 nanocrystals,” J. Phys. D: Appl. Phys., 33, 912 (2000).
    3.4 Z. Zhang, L. Zhang, S. Wang, W. Chen and Y.Lei, “A covenient route to polyacrylonitrile/silver nanoparticle composite by simultaneous polymerization-reuction approach,” Polymer, 42 ,8315 (2001).
    3.5 C. Pe’rez Leo’n, L. Kador, B. Peng and M. Thelakkat, “Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV-Vis, Raman, and FTIR spectroscopies,” J. Phys. Chem. B, 110, 8723(2006).
    3.6 S. W. Joo, “Electric field-induced charge transfer of (Bu4N)2[Ru(dcbpyH)2-(NCS)2] on Gold, Silver, and Copper Electrode surfaces investigated by means of surface-enhanced Raman scattering,” Bull. Korean Chem. Soc., 28, 1405 (2007).
    3.7 G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cell,” Nano Lett.,6, 215 (2006).
    3.8 Y. Diamant, S. Chappel, S.G. Chen, O. Melamed and A. Zaban, “Core–shell nanoporous electrode for dye sensitized solar cells: the effect of shell characteristics on the electronic properties of the electrode,” Coordin. Chem. Rev., 248, 1271 (2004).
    3.9 L. Zhang, Y. Shi, S. Peng, J. Liang, Z. Tao and J. Chen, “Dye-sensitized solar cells made from BaTiO3-coated TiO2 nanoporous electrodes,” J. Photoch. Photobio. A, 197, 260 (2008).

    QR CODE
    :::