跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林俊寬
Chun-Kuan Lin
論文名稱: 即時通訊監測技術之研究
A Study of Monitoring Technologies in Instant Messenger
指導教授: 吳中實
Jung-Shyr Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 55
中文關鍵詞: 即時通訊監測支援向量機
外文關鍵詞: detection, Support Vector Machine, instant messenger
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 即時通訊(Instant Messenger)已成為現今網際網路中不可或缺的一項溝通工具,即時通訊軟體帶給人們便利卻也造成網路安全上的一大漏洞。隨著使用人數增加,公司已不能不正視即時通訊所帶來的各種問題。
    過去公司為了避免使用者利用即時通訊洩漏公司機密,會利用一些阻擋方式來限制公司員工使用即時通訊軟體,如關閉通訊埠…等等。但隨著即時通訊軟體版本不斷地更新,越來越多即時通訊軟體已無法使用過去舊有的方式來阻擋使用者使用。本篇主要就是要討論不同於過去的阻擋方式,而是分析即時通訊的特徵及行為模式,並利用支援向量機來訓練即時通訊偵測系統,可作為未來在監測、側錄及阻擋即時通訊上一項依據。


    Nowadays the instant messenger has become an indispensable Internet communication tool, the instant messenger software makes people feel convenient but also creates a big loophole in the network security. With the popularity of the instant messenger, the company has to face up to variaous questions which the instant messenger brings.
    In the past, many companies used some blocking ways to avoid staffs using the instant messenger to divulge the company secret, like closing communication port...etc. But with the evolution of the instant messenger software, some old methods cannot keep the users from the messengers. In this thesis, we discuss detection of instant messengers by different way. We analyze the characteristics of various instant messengers and their behavior patterns. We train the instant messenger detection system by using the support vector machine. In the future, our research results can be a basis for the monitoring, side recording and obstruction of the instant messenger.

    第一章 序論................................1 1.1 前言...................................1 1.2 研究動機...............................3 1.3 論文架構...............................3 第二章 相關背景及研究......................4 2.1 背景介紹...............................4 2.1.1 MSN Messenger........................4 2.1.2 Yahoo Messenger.......................6 2.1.3 Skype.................................7 2.2 過去阻擋即時通訊之方法................10 2.3 過去突破阻擋之方法....................11 2.3.1 建立Tunnel方式......................11 2.3.2 利用Web.............................12 第三章 使用支援向量機之即時訊息偵測系統...14 3.1 支援向量機............................14 3.1.1 風險最小化...........................14 3.1.2 超平面(hyperplane).................17 3.1.3 最佳化定理...........................19 3.1.4 核心函數(kernel)...................20 3.2 即時通訊之行為特徵....................22 3.2.1 固定特徵.............................22 3.2.2 模糊特徵.............................23 第四章 系統架構及數據分析.................25 4.1 系統架構..............................25 4.2 數據分析及討論........................29 4.2.1 未封鎖即時通訊.......................30 4.2.2 封鎖即時通訊(SOCKS伺服器)..........43 第五章 結論...............................53 5.1 未來工作..............................53 5.2 結論..................................53 參考文獻...................................55

    [1] Microsoft, http://www.microsoft.com/
    [2] AIM, http://www.aim.com/
    [3] Yahoo Messenger, http://tw.messenger.yahoo.com/
    [4] Yam QQ, http://qq.yam.com/
    [5] ICQ, http://www.icq.com/
    [6] B. Campbell, et. al, " Session Initiation Protocol (SIP) Extension for Instant Messaging", RFC 3428, December 2002.
    [7] Day, M., Rosenberg, J. and H. Sugano, "A Model for Presence and Instant Messaging", RFC 2778, February 2000.
    [8] Day, M., Aggarwal, S. and J. Vincent, "Instant Messaging /Presence Protocol Requirements", RFC 2779, February 2000.
    [9] ITU, http://www.itu.int/ITU-T/
    [10] Rosenberg, J., et. al, "SIP: Session Initiation Protocol", RFC 3261, June 2002.
    [11] Skype, http://www.skype.com/
    [12]V. Vapnik, "The nature of statistical learning theory. Springer",1995
    [13] R. Movva and W. Lai, "MSN Messenger Service 1.0 Protocol", Internet Draft, draft-movva-msn-messenger-protocol-00.txt, August, 1999
    [14] Chih-Chung Chang and Chih-Jen Lin, LIBSVM, http://www.csie.ntu.edu.tw/~cjlin/libsvm/
    [15] Binh Viet Nguyen, "An Application of Support Vector Machines to Anomaly Detection.",Research in Computer Science – Support Vector Machine ,Fall 2002
    [16] Burges C. "A Tutorial on Support Vector Machines for Pattern Recognition. " Data Mining and Knowledge Discovery, 1998,2(2): 121-167.

    QR CODE
    :::