| 研究生: |
鍾昆原 Kun-Yun Zho |
|---|---|
| 論文名稱: |
7005擠製鋁合金的拉伸與疲勞性質研究 |
| 指導教授: |
施登士
Teng-Shih Shih |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 34 |
| 中文關鍵詞: | 7005 、多角化 、動態回復 、動態再結晶 、可靠度 |
| 外文關鍵詞: | 7005, poligonization, dynamic recovery, dynamic recrystallization, reliability |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在拉伸性質方面,討論高應變速率(1.85x10-2 s-1)及低應變速率(1.85x10-4 s-1)對拉伸強度、降伏強度及伸長率的影響,分析微結構變化對拉伸性質造成的差異。實驗結果顯示,高應變速率下應變硬化效果顯著,得到較高的拉伸強度及降伏強度;低應變速率下由於動態回復的多角化過程,得到次晶粒受應力作用拉長,因此有較高的伸長率。
疲勞性質方面,分析兩種高低反覆應力(240 MPa、180 MPa)的破壞模式與微結構改變之間的關係。實驗結果顯示,存在於試棒表面附近的介在物顆粒對疲勞壽命有很大的影響。在塑性變形過程中,若發生動態回復、多角化的現象,使晶粒軟化,疲勞裂縫呈現穿晶破壞模式,出現疲勞紋;若發生動態再結晶的現象,會出現細小的晶粒,疲勞裂縫呈現沿晶破壞,可以看到粗糙的破壞表面。最後利用可靠度統計分析中常用的韋伯分布函數來討論疲勞的破壞機率,並做疲勞壽命預測。
The aim of this study was to investigate the tensile and fatigue properties of as- extruded aluminum alloy, 7005.
Regrading to tensile properties, specimens were tested at higher strain rate (1.85x10-2 s-1) and lower strain rate (1.85x10-4 s-1) and showed the effects on the UTS, YS and elongation. As the experimental results indicated, the strain hardening effect under higher strain rate was more obvious and both the UTS and YS were higher. The polygonization of dynamic recovery under lower strain rate deformation resulted in subgrains stretched by tensile stress. So the elongation was higher, too.
In the part of fatigue property, the relationship between fractography and microstructure of specimens under two levels of repeated stress(240 MPa、180 MPa) was analyzed. As the experimental results indicated, the existent inclusion particles near specimen surface had a great influence on fatigue life. During the plastic deformation process, if dynamic recovery and polygonization occurred in the specimens, the grains were softened and the fatigue crack was transgranular fracture. Then the fatigue striations showed. If dynamic recrystallization occurred, the microstructure showed fine grains and the fatigue crack was intergranular fracture. The rough fracture surface was observed. Finally the statistical analysis of reliability, Weibull distribution function, was utilized to predict the fracture probability and fatigue life.
1. 黃振賢, “機械材料”, 文京圖書股份有限公司, 新竹, 民國69年, 第311~
331頁。
2. 賴耿陽, “非鐵金屬材料”, 復漢出版社, 台北, 民國71年, 第151~168頁。
3. ASM, “Aluminum Alloys”, Metals Handbook 8th Edition, Vol.8, 1976,
pp.261.
4. ASM, “Aluminum Alloys”, Metals Handbook 8th Edition, Vol.8, 1976,
pp.265.
5. Gurbuz R, Alpay S.P., “Effect of coarse second phase particle on
fatigue crack propagation of an Al-Zn-Mg-Cu alloy”, Scripta Metallurgica et Matenrialia, V30 n11, Jun 1 1944, pp.1373~1376
6. Robert E. Reed-Hill, “Slip System in Different Crystal Forms”,
Physical Metallurgy Principles, 3th Edition, 1994, pp.140~146.
7. R. W. Cahn and P. Haasen, “Crystal Structures of The Metallic
Elements”, Physical Metallurgy, Third revised and enlarged edition,
1983, pp.50~60.
8. 陳永增,鄧惠源, “機械材料試驗”, 高立出版社, 台北, 民國86年, 第83~98
頁。
9. ASM, “Introduction to Tensile Testing”, Metals Handbook 8th Edition,
Vol.8, 1976, pp.
10. Robert E. Reed-Hill, “The Rotating-Beam Fatigue Test”, Physical
Metallurgy Principles, 3th Edition, 1994, pp.750~752.
11. 陳永增, “金屬模鑄造球墨鑄鐵之信賴度分析”, 國立師範大學工業教育研
究所碩士論文, 台北, 民國80年6月, 第12~15頁。
12. 鍾志賢, “A356鋁合金擠壓鑄件機械性質之可靠度分析”, 國立中央大學機
械工程研究所碩士論文, 桃園, 民國85年6月, 第14~15頁。
13. 劉文勝, “AZ61鎂合金的疲勞性質與破壞分析”, 國立中央大學機械工程研
究所碩士論文, 桃園, 民國89年7月, 第13~15頁。
14. S. K. Tsang, T. S. Lui & L. H. Chen, “ Weibull analysis on the
Elongation Distributions of Austempered Ductile Irons at Various
Tensile Test Temperatures”, 鑄工, 第84期, 第11~18頁。
15. Hiroshi Tamura, Yoshihiro Sugiyama and Taro Kimura, “Estimation of
Fatigue Limit for Ductile Cast Iron”, 日本鑄造工學, 第69卷, 第3
號, 1997, p.234~239.
16. M. Klesnil, P. Lukas, “Sites of Crack Initiation”, Fatigue of Metallic
Materials, Second Revised Edition, 1992, pp.67~70.
17. Robert E. Reed-Hill, “The Microscopic Aspects of Fatigue Failure”,
Physical Metallurgy Principles, 3th Edition, 1994, pp.755~760.
18. Robert E. Reed-Hill, “The Plastic Zone Size Ahead of A Crack”,
Physical Metallurgy Principles, 3th Edition, 1994, pp.792~795.
19. M. Klesnil, P. Lukas, “Kinetics of Crack Growth”, Fatigue of Metallic
Materials, Second Revised Edition, 1992, pp.92~97.
20. C. Laird, “ Fatigue Crack Propagation”, ASTM. STP 415, ASTM,
Philadelphia, 1967, pp.131.
21. W. Weibull, “Statistical Distribution function of Wide
Applicability”, Journal of Apply Mechanics, Sep. 1951, pp.293~297.
22. 可靠度研究小組譯, “實用可靠度”, 和昌出版社, 中壢, 民國73年, 第
245~263頁。
23. Veletsos, Anesitis Stavrou, “Design Approaches”, Chapter 15, 1988,
pp.663~679.
24. Robert E. Reed-Hill, “Dynamic Recovery”, Physical Metallurgy
Principles, 3th Edition, 1994, pp.181~183.
25. Robert E. Reed-Hill, “Polygonization”, Physical Metallurgy
Principles,3th Edition, 1994, pp.233~239.
26. George E. Dieter, “Low-angle Grain Boundaries”, Mechanical
Metallurgy, SI Metric Edition, 1988, pp.193~197.
27. George E. Dieter, “Stacking Faults”, Mechanical Metallurgy, SI Metric
Edition, 1988, pp.135~137.
28. Robert E. Reed-Hill, “Recrystallization”, Physical Metallurgy
Principles, 3th Edition, 1994, pp.240~247.
29. William D. Callister, Jr., “Recovery, Recrystallization and Grain
Growth”, Materials Science and Engineering, 1993, pp.168~173.
30. J. P. Lin, T. C. Lei & X. Y. An, “Dynamic Recrystallization during Hot
Compression in Al-Mg Alloy”, Scripta Metallurgica, Vol. 26, 1992,
pp.1869~1874.
31. K. C. Kapur, L. R. Lamberson, “Reliability in Engineering Design”,
John Wiley & Sons, 1977, pp.291~329.
32. T.S. Srivatsan, S.Anand, D.Veeraghavan, and V.K.Vasudevan, “The
Tensile Response and Fracture Behavior of an Al-Zn-Mg-Cu
Alloy:Influence of Temperature”, Journal of Materials Engineering
and Performance, vol.6(3), June 1977, pp.349~358
33. Patton,G., Rinaldi,C., Brechet,Y., Lormand,G. and Fougeres,R.,
“Study of fatigue damage in 7010 aluminum alloy”, Materials Science
& Engineering A, v A254 n1-2, Oct.15 1998, pp.207~218
34. M.Papakyriacou, H.R.Mayert, S.E.Stanal-Tschegg and M.Groschl,
“Fatigue properties of Al2O3-particle-reinforced 6061 aluminium
alloy in the high-cycle regime”, International Journey of Fatigue,
vol.18 n7, 1996, pp.475~481
35. Teng-Shih Shih, Wen-Sun Liu, Yeong-Jern Chen, “Fatigue of as-extruded
AZ61A magnesium alloy”, Materials Science and Engineering A, 2001
Accepted.