跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊廷煜
Ting-Yu Yang
論文名稱: 庫倫阻斷區間的量子點分子引擎分析
指導教授: 郭明庭
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 58
中文關鍵詞: 量子點熱電元件熱引擎轉換效率
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文討論了三顆串接耦合量子點的能源回收引擎之效率,該引擎將環境中的熱能轉換成電能。藉由引入外部負載,解系統的自洽方程式,可以推得能源回收引擎的穿隧電流、感應熱電位以及回收效率。我們發現系統於溫差驅動之下,其電流行為會呈現雙極效應。除此之外,穿隧電流與熱電位間遵循熱電的冷次定律。回收效率的最大值傾向發生於三顆串接耦合量子點系統處於軌道空態的情形,但效率容易受到冷端溫度及溫度差的影響。量子點間距影響電子的躍遷強度,使得效率會在特定條件達到最大值。然而,因量子點尺寸大小相異形成的量子點能階不均勻,使得效率大幅降低。即便量子點不均勻對回收效率影響甚劇,但可利用此製作新穎的熱電元件:溫差驅動之電流二極體。在非線性響應區間之下,階梯狀分布的量子點能階可產生具方向性的電流行為。若以整流率為基準判斷元件的優劣,經由調控量子點之間的距離以及尺寸大小,可以提升二極體的整流率,達到元件的最佳化設計。


    The nonlinear transport properties of serially coupled triple quantum dots system (SCTQD) connected to the metallic electrodes is theoretically investigated in the Coulomb blockade regime for the application of energy harvesting engines (EHE). The thermal-induced voltage is solved self-consistently. Electron currents driven by a temperature difference shows the bipolar oscillatory behavior with respect to QD energy levels. The maximum efficiency of EHE occurs for SCTQD in the orbital depletion situation rather than electron orbital-filling situation. The efficiency of EHE increases with increasing a temperature-bias. In addition, we have investigated how the efficiency of EHE is influenced by the electron- hopping strengths, and QD energy level fluctuations (QDELF). Despite, the efficiency of EHE is seriously suppressed by QDELF, which is useful to design an electron diode driven by a temperature bias. We find that a SCTQD with staircase energy level structures shows the direction-dependent currents derived by a temperature bias.

    摘要 i Abstract ii 致謝 iii 目錄 v 圖目錄 vii 表目錄 x 第一章、導論 1 1-1前言 1 1-2 熱電效應簡介 1 1-3 文獻回顧 3 1-4 研究動機 5 第二章、串接耦合量子點能源回收系統的理論模型 6 2-1 前言 6 2-2 理論模型 7 2.2.1 系統電子總能 8 2.2.2 穿隧電流與熱流 9 2.2.3 電子傳輸係數 10 2.2.4 系統的能源回收效率 11 第三章、串接耦合量子點能源回收系統之回收效率分析 13 3-1 前言 13 3-2 串接耦合量子點系統的溫差驅動電流與電壓驅動電流分析 14 3-3在調變不同冷端溫度條件下之系統回收效率分析 18 3-4 在調變不同溫差條件下之系統回收效率分析 21 3-5 在調變不同電子躍遷強度下之系統回收效率分析 24 3-6 量子點能階不均勻的情形下之系統回收效率分析 27 第四章、串接耦合量子點系統熱二極體整流效率分析 32 4-1 前言 32 4-2串接耦合量子點系統在非線性響應區間下之電流與熱電位 33 4-3 串接耦合量子點系統電流整流效率分析 36 第五章、結論 40 參考文獻 41

    [1] Lon E. Bell, “Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems”, Science 321, 1457-1461 (2008).
    [2] Y. G. Gurevich and G. N. Logvinov, “Physics of Thermoelectric Cooling”, Semicond. Sci. Technol. 20, R57 (2005).
    [3] A. F. Ioffe, Semiconductor Thermoelements, and Thermoelectric Cooling, Infosearch Limited, London (1957).
    [4] G. Grosso, G. P. Parravicini, Solid State Physics, Academic Press, Amsterdam (2000).
    [5] Arun Majumdar, “Thermoelectricity in Semiconductor Nanostructures”, Science 303, 777-778 (2004).
    [6] Francis J. DiSalvo, “Thermoelectric Cooling and Power Generation”, Science 285, 703-706 (1999).
    [7] M. Zebarjadi, K. Esfarjania, M. S. Dresselhaus, Z. F. Ren, and G. Chen, “Perspectives on thermoelectrics: from fundamentals to device applications”, Energy Environ. Sci. 5, 5147 (2012).
    [8] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yang, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, “ High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys”, Science 320, 634-638 (2008).
    [9] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, “Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys”, Nano Lett. 8, 4670-4674 (2008).
    [10] L. D. Hicks, and M. S. Dresselhaus, “Thermoelectric Figure of Merit of a One-Dimension Conductor”, Phys. Rev. B 47, 16631(R) (1993).
    [11] P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, John Wiley & Sons (2005).
    [12] Y. Yu. Peter, Effect of Quantum Confinement on Electrons and Phonons in Semiconductors, Fundamental of Semiconductors, 469-551, Springer, Berlin, Heidelberg (2010).
    [13] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.-P. Fleurial, and P. Gogna, “New Directions for Low-Dimensional Thermoelectric Materials”, Advanced Materials 19, 1043-1053 (2007).
    [14] T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, “Quantum Dot Superlattice Thermoelectric Materials and Devices”, Science 297, 2229-2232 (2002).
    [15] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. –K. Yu, W. A. Goddard III, and J. R. Health, “Silicon Nanowires as Efficient Thermoelectric Materials”, Nature 451, 168-171 (2008).
    [16] David M.-T. Kuo, and Yia-Chung Chang, “Thermoelectric Properties of a Quantum Dot Array Connected to Metallic Electrodes”, Nanotechnology 24, 175403 (2013).
    [17] N. A. Roberts, and D. G. Walker, “A Review of Thermal Rectification Observations and Models in Solid Materials”, International Journal of Thermal Sciences 50, 648-662 (2011).
    [18] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, “Solid-State Thermal Rectifier”, Science 314, 1121-1124 (2006).
    [19] M. J. Martinez-Pérez, Antonio Fornieri, and Francesco Giazotto, “Rectification of Electronic Heat Current by a Hybrid Thermal Diode”, Nature Nanotechnology 10, 303-307 (2015).
    [20] David M.-T. Kuo, and Yia-Chung Chang, ”Thermoelectric and Thermal Rectification Properties of Quantum Dot Junctions”, Phys. Rev. B 81, 205321 (2010).

    [21] David M.-T. Kuo, ” Thermoelectric Properties of Double Quantum Dots Embedded in a Nanowire”, Jpn. J. Appl. Phys. 50, 025003 (2011).
    [22] B. Sothmann, R. Sánchez, and A. N. Jordan, ”Thermoelectric Energy Harvesting with Quantum Dots”, Nanotechnology 26, 032001 (2015).
    [23] M. Esposito, K. Lindenberg, and C. Van den Broeck, “Thermoelectric Efficiency at Maximum Power in a Quantum Dot”, EPL (Europhysics Letters) 85, 60010 (2009).
    [24] M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck, “Quantum-dot Carnot Engine at Maximum Power”, Phys. Rev. E 81, 041106 (2010).
    [25] R. Sánchez, and M. Büttiker, “Optimal Energy Quanta to Current Conversion”, Phys. Rev. B 83, 085428 (2011).
    [26] Y. S. Liu, X. F. Yang, X. K. Hong, M. S. Si, and Y. Guo, “A High-efficiency Double Quantum Dot Heat Engine” Appl. Phys. Lett. 103, 093901 (2013).
    [27] A.-P. Jauho, N. S. Wingreen, and Y. Meir, “Time-dependent Transport in Interacting and Noninteracting Resonant-tunneling Systems”, Phys. Rev. B 50, 5528 (1994).
    [28] David M.-T. Kuo, and Yia-Chung Chang, “Thermoelectric Properties of a Semiconductor Quantum Dot Chain Connected to Metallic Electrodes”, arXiv:1209.0506 (2012).
    [29] Chih-Chieh Chen, David M.-T. Kuo, and Yia-Chung Chang, “Quantum Interference and Structure-dependent Orbital-filling Effects on the Thermoelectric Properties of Quantum Dot Molecules”, Phys. Chem. Chem. Phys. 17, 19386 (2015).
    [30] David M.-T. Kuo, and Yia-Chung Chang, “Bipolar Thermoelectric Effect in a Serially Coupled Quantum Dot System”, Jpn. J. Appl. Phys. 50, 105003 (2011).
    [31] David M. -T. Kuo, and Yia-Chung Chang, “Long-distance Coherent Tunneling Effect on the Charge and Heat Currents in Serially Coupled Triple Quantum Dots”, Phys. Rev. B 89, 115416 (2014).
    [32] David M. -T. Kuo, Shiue-Yuan Shiau, and Yia-Chung Chang, “Theory of Spin Blockade, Charge Ratchet Effect, and Thermoelectrical Behavior in Serially Coupled Quantum Dot System”, Phys. Rev. B 84, 245303 (2011).
    [33] P. Ben -Abdallah, and Svend -Age Biehs, “Phase-change Radiative Thermal Diode”, Appl. Phys. Lett. 103, 191907 (2013).
    [34] J. Zhu, K. Hippalgaonkar, S. Shen, K. Wang, Y. Abate, S. Lee, J. Wu, X. Yin, A. Majumdar, and X. Zhang, “Temperature-gated Thermal Rectifier for Active Heat Flow Control”, Nano Lett. 14, 4867-4872 (2014).
    [35] Yen -Chun Tseng, David M. -T. Kuo, Yia -Chung Chang, and Yan -Ting Lin, “Heat Rectification Effect of Serially Coupled Quantum Dots”, Appl. Phys. Lett. 103, 053108 (2013).

    QR CODE
    :::